Purpose: The goal of this study was to identify the mechanisms by which 15-deoxy-Delta(12,14)-prostaglandin J(2) (dPGJ(2)) protects RPE cells from oxidative injury.
Methods: Cell viability was determined by MTT assay. Protein expression and activation of signaling molecules were detected by Western blot. Reduced glutathione (GSH) was determined by a colorimetric assay kit. PPARgamma expression was knockdown by small interfering (si)RNA technique.
Results: dPGJ(2) protected ARPE19 cells from oxidative injury, whereas the synthetic PPARgamma agonists AGN195037 and rosiglitazone had no effect. PPARgamma knockdown also did not affect dPGJ(2)'s protective activity. dPGJ(2) upregulated GSH synthesis via induction of glutamylcysteine ligase. GSH depletion sensitized cells to oxidative stress and completely reversed the protective effect of dPGJ(2). dPGJ(2) activated ERK, JNK, and p38; GSH induction by dPGJ(2) depended partially on JNK and p38. In addition, dPGJ(2) significantly extended hydrogen peroxide-induced activation of JNK and p38, but not of Akt. Inhibition of MEK, JNK, and p38 abolished dPGJ(2)'s protection of ARPE19 cells from oxidative injury, whereas inhibiting PI3K/Akt pathway failed to affect dPGJ(2)'s protective effect. Heme oxygenase-1 was strongly induced by dPGJ(2) but was not associated with protection.
Conclusions: Independent of its PPARgamma activity, dPGJ(2) protected cells from oxidative stress by elevating GSH and enhancing MAPK activation. Thus, dPGJ(2) may delay the development of dry-type age-related macular degeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.06-0318 | DOI Listing |
Int J Surg
January 2025
Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.
Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFNeurotox Res
January 2025
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Resveratrol, a natural polyphenol, has shown promising neuroprotective effects in several in vivo and in vitro experimental models. However, the mechanisms by which resveratrol mediates these effects are not fully understood. Glutamate is the major excitatory neurotransmitter in the brain; however, excessive extracellular glutamate levels can affect neural activity in several neurological diseases.
View Article and Find Full Text PDFDalton Trans
January 2025
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.
View Article and Find Full Text PDFAntioxid Redox Signal
January 2025
Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.
Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!