Sleeping Beauty-mediated eNOS gene therapy attenuates monocrotaline-induced pulmonary hypertension in rats.

FASEB J

Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610-0267, USA.

Published: December 2006

Pulmonary hypertension (PH) is a life-threatening disorder with high mortality rates and limited treatment options. Gene therapy is an alternative treatment strategy, yet viral vectors have inherent disadvantages including immune activation. The Sleeping Beauty (SB) transposon is a nonviral method of gene delivery that overcomes some of these drawbacks. A SB-based transposon harboring a constitutively active endothelial nitric oxide synthase (eNOS) gene was administered to Sprague-Dawley rats via tail vein injection using the carrier polyethylenimine. Two days after transposon delivery, monocrotaline (MCT) was administered to induce PH. Hemodynamic, histological, and molecular measurements were performed four weeks later. Animals coinjected with transposase showed a significant reduction in pulmonary arterial pressure (PABP, 31.67+/-6.03 mmHg, P<0.01), an attenuation of right ventricle (RV) to whole heart (WH) wt ratios (0.227+/-0.0252, P<0.05) and a decrease in the pulmonary vessel wall thickness index (36.87%, P<0.001), compared with those animals receiving the eNOS transposon and a nonfunctional transposase (PABP 44.33+/-4.04 mmHg; RV/WH ratio 0.280+/-0.01; wall thickness index 62.14%) or control animals receiving MCT injection alone (PABP 49.67+/-3.22 mmHg; RV/WH ratio 0.290+/-0.0265; wall thickness index 71.99%). The physiological improvements correlated with therapeutic gene expression, suggesting that transposon-based genetic approaches have utility in the treatment of PH.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.06-6254fjeDOI Listing

Publication Analysis

Top Keywords

enos gene
8
gene therapy
8
pulmonary hypertension
8
sleeping beauty-mediated
4
beauty-mediated enos
4
gene
4
therapy attenuates
4
attenuates monocrotaline-induced
4
monocrotaline-induced pulmonary
4
hypertension rats
4

Similar Publications

Association studies of vasoactive genes and preeclampsia in taiwan.

Placenta

January 2025

Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan. Electronic address:

Background: Preeclampsia (PE) is a serious condition characterized by hypertension and proteinuria after 20 weeks of gestation. The exact cause of PE is unknown but may involve abnormalities in the renin-angiotensin-aldosterone system (RAAS) and endothelial nitric oxide synthase (eNOS). Genetic variations in angiotensinogen (AGT), angiotensin-converting enzyme (ACE), and eNOS genes have been associated with PE.

View Article and Find Full Text PDF

Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.

View Article and Find Full Text PDF

Background: Specific treatment for rheumatoid arthritis (RA) is still an unmet need. Yu-Xue-Bi (YXB) capsule effectively treats RA with blood stasis syndrome (BS). However, its mechanism remains unclear.

View Article and Find Full Text PDF

ClC-5 knockout mitigates angiotensin II-induced hypertension and endothelial dysfunction.

Life Sci

February 2025

Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus-induced erectile dysfunction (DMED) lacks targeted therapies. This study investigates the mechanisms and targets of Radix Paeoniae Rubra and Radix Angelicae Sinensis Granules (RAG) in treating DMED using network pharmacology and animal models.

Methods: We identified RAG's active ingredients and potential targets from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!