Transglutaminase 2 (TG2) represents the most ubiquitous isoform belonging to the TG family, and has been implicated in the pathophysiology of basal ganglia disorders, such as Parkinson's disease and Huntington's disease. We show that ablation of TG2 in knockout mice causes a reduced activity of mitochondrial complex I associated with an increased activity of complex II in the whole forebrain and striatum. Interestingly, TG2-/- mice were protected against nigrostriatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is converted in vivo into the mitochondrial complex I inhibitor, 1-methyl-4-phenyl-pyridinium ion. In contrast, TG2-/- mice were more vulnerable to nigrostriatal damage induced by methamphetamine or by the complex II inhibitor, 3-nitropropionic acid. Proteomic analysis showed that proteins involved in the mitochondrial respiratory chain, such as prohibitin and the beta-chain of ATP synthase, are substrates for TG2. These data suggest that TG2 is involved in the regulation of the respiratory chain both in physiology and pathology, contributing to set the threshold for neuronal damage in extrapyramidal disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1471-4159.2006.04140.x | DOI Listing |
Nat Metab
January 2025
Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.
Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.
View Article and Find Full Text PDFSci Rep
January 2025
Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
It is established that patients hospitalised with COVID-19 often have ongoing morbidity affecting activity of daily living (ADL), employment, and mental health. However, little is known about the relative outcomes in patients with COVID-19 neurological or psychiatric complications. We conducted a UK multicentre case-control study of patients hospitalised with COVID-19 (controls) and those who developed COVID-19 associated acute neurological or psychiatric complications (cases).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
Melanoma, a highly aggressive skin cancer, poses significant challenges due to its rapid metastases and high mortality rates. While metformin (Met), a first-line medication for type 2 diabetes, has shown promise in inhibiting tumor growth and metastases, its clinical efficacy in cancer therapy is limited by low bioavailability, short half-life, and gastrointestinal adverse reactions associated with oral administration. In this study, we developed a hollow mesoporous polydopamine nanocomposite (HMPDA-PEG@Met@AB) coloaded with Met and ammonia borane (AB), designed to enable a combined gas-assisted, photothermal, and chemotherapeutic approach for melanoma treatment.
View Article and Find Full Text PDFJ Transl Autoimmun
June 2025
Rheumatology Research Center, Tehran University of Medical Science, Tehran, Iran.
Iron is a crucial element for living organism in terms of oxygen transport, hematopoiesis, enzymatic activity, mitochondrial respiratory chain function and also immune system function. The human being has evolved a mechanism to regulate body iron. In some rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), and gout, this balanced iron regulation is impaired.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!