Complexation chemistry for tuning release from polymer coatings.

J Phys Chem B

Cell and Molecular Biology/Biolpolymer Products AB, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden.

Published: November 2006

The strategy of metal ion complexation is employed to design a delivery system for an antifouling agent (AFA) in marine paints. A poly(1-vinylimidazole-co-methyl methacrylate) copolymer (PVM), together with Cu2+ or Zn2+ formed a PVM-M2+ complex. The AFA, Medetomidine, was then coordinated into the complex. The coordination strength was investigated in solution by 1H NMR and on solid surfaces by using the Quartz Crystal Microbalance with Dissipation monitoring technique (QCM-D) and Surface Plasmon Resonance (SPR). From the 1H NMR experiments strong interactions were observed between Cu2+ and the PVM-polymer and between Medetomidine and the PVM-Cu2+ complex. From the QCM-D and SPR measurements it was shown that Cu2+, compared to Zn2+, exhibited a larger affinity for the PVM-copolymer surface that resulted in higher degree of swelling of the polymer film. Large amounts of Medetomidine were adsorbed to the PVM-Cu2+ complex resulting in low desorption rates. However, the adsorbed amount of Medetomidine was lower to the Zn2+ doped polymer and a higher desorption rate was observed. These results indicate the possibility of tuning the release of Medetomidine by altering the coordinating metal ion, which may prove to be favorable in a paint formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0637532DOI Listing

Publication Analysis

Top Keywords

tuning release
8
metal ion
8
pvm-cu2+ complex
8
medetomidine
5
complexation chemistry
4
chemistry tuning
4
release polymer
4
polymer coatings
4
coatings strategy
4
strategy metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!