To model the chemical properties of the hydrogen-terminated nanodiamond {111} and {110} surfaces, the functionalizations of the higher diamondoid [1(2,3)4]pentamantane were studied. [1(2,3)4]Pentamantane reacts selectively with neat bromine to give the medial 2-mono- and 2,4-disubstitution products. In contrast, oxidation with nitric acid as well as single-electron-transfer oxidation involving the [1(2,3)4]pentamantane radical cation results in apical C7-substitutions. This substitution pattern dominates in the free-radical bromination under phase-transfer catalytic conditions that gives a mixture of 7- and 2-bromo[1(2,3)4]pentamantane in a 95:5 ratio. Replacement of the functional groups in [1(2,3)4]pentamantane occurs without isomerization. This was demonstrated for the interconversions of the bromo and hydroxy derivatives as well as for the preparation of [1(2,3)4]pentamantyl-7-thiol from 7-hydroxy[1(2,3)4]pentamantane. Thus, the selective functionalization of hydrogen-terminated nanodiamonds is possible by means of reactions with common electrophiles-oxidizers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo061561x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!