A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Routes are trees: the parsing perspective on protein folding. | LitMetric

Routes are trees: the parsing perspective on protein folding.

Proteins

Institute for Research in Cognitive Science and Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104-6228, USA.

Published: January 2007

An important puzzle in structural biology is the question of how proteins are able to fold so quickly into their unique native structures. There is much evidence that protein folding is hierarchic. In that case, folding routes are not linear, but have a tree structure. Trees are commonly used to represent the grammatical structure of natural language sentences, and chart parsing algorithms efficiently search the space of all possible trees for a given input string. Here we show that one such method, the CKY algorithm, can be useful both for providing novel insight into the physical protein folding process, and for computational protein structure prediction. As proof of concept, we apply this algorithm to the HP lattice model of proteins. Our algorithm identifies all direct folding route trees to the native state and allows us to construct a simple model of the folding process. Despite its simplicity, our model provides an account for the fact that folding rates depend only on the topology of the native state but not on sequence composition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.21195DOI Listing

Publication Analysis

Top Keywords

protein folding
12
folding process
8
native state
8
folding
7
routes trees
4
trees parsing
4
parsing perspective
4
protein
4
perspective protein
4
folding puzzle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!