Background: Increases in sympathetic nerve activity during ischemia may increase intracellular fatty acid (FA) accumulation via enhanced FA uptake and inhibition of beta-oxidation. Therefore, the beneficial effects of beta-adrenoceptor blockade on myocardial ischemic injury might result from the suppression of FA accumulation.

Methods And Results: Carvedilol (1 mg/kg) or propranolol (1 mg/kg) was injected 10 min before 15-min occlusion of coronary artery in rats. Myocardial FA accumulation and intracellular metabolites of FA tracer were determined 3 days after reperfusion using (125)I-and (131)I-9-metylpentadecanoic acid (9MPA). Carvedilol significantly decreased 9MPA accumulation in both the ischemic region (IR) and non-IR, as compared with vehicle, and increased its clearance. However, the non-metabolized 9MPA fraction was not different between carvedilol- and vehicle-treated rats. Consequently, the amount of non-metabolized 9MPA in the myocardium was lower in rats treated with carvedilol than in those given vehicle. These effects of carvedilol were not different from those of propranolol.

Conclusion: Beta-adrenoceptor blockade did not affect a visual assessment of the autoradiographic image of 9MPA in hearts subjected to ischemia-reperfusion, but it accelerated the clearance of 9MPA in both the IR and non-IR. The administration of beta-blockade before ischemia could accelerate the recovery from ischemia-reperfusion injury by inhibiting myocardial FA accumulation before beta-oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1253/circj.70.1509DOI Listing

Publication Analysis

Top Keywords

beta-adrenoceptor blockade
12
myocardial accumulation
12
blockade myocardial
8
fatty acid
8
ischemia-reperfusion injury
8
non-metabolized 9mpa
8
9mpa
6
accumulation
5
influence beta-adrenoceptor
4
myocardial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!