High-conductance K channels in intercalated cells of the rat distal nephron.

Am J Physiol Renal Physiol

Department of Physiology and Biophysics, Weill Medical College of Cornell Univ., 1300 York Ave., New York, NY 10021, USA.

Published: March 2007

AI Article Synopsis

  • High-conductance BK potassium channels are primarily found in intercalated cells (ICs) of the rat connecting tubule, while they are rare in principal cells (PCs).
  • Under low intracellular Ca(2+) conditions, ICs show very low potassium conductance, but increasing Ca(2+) activates voltage-dependent K(+) currents.
  • Despite high K+ intake not enhancing these currents, ICs have the potential to contribute to renal K(+) secretion if intracellular Ca(2+) levels rise, though the mechanism for K(+) entry into ICs remains unclear.

Article Abstract

High-conductance (BK or maxi) K(+) channels were observed in cell-attached patches of the apical membrane of the isolated split-open rat connecting tubule (CNT). These channels were quite rare in cells identified visually as principal cells (PCs; 5/162 patches) but common in intercalated cells (ICs; 24/26 patches). The BK-expressing intercalated cells in the CNT and cortical collecting duct (CCD) were characterized by a low membrane potential (-36 mV) under short-circuit conditions, measured from the reversal potential of the channel currents with similar K(+) concentrations on both sides of the membrane. Under whole-cell clamp conditions with low intracellular Ca(2+), ICs had a very low K(+) conductance. When cell Ca(2+) was increased to 200 nM, a voltage-dependent, tetraethylammonium (TEA)-sensitive outward conductance was activated with a limiting value of 90 and 140 nS/cell in the CNT and CCD, respectively. Feeding animals a high-K diet for 1 wk did not increase these currents. TEA-sensitive currents were much smaller in PCs and usually below detection limits. To examine the possibility that the ICs participate in transepithelial K(+) secretion, we measured Na/K pump activity as a ouabain-sensitive current. Although these currents were easily observed in PCs, averaging 79 +/- 14 and 250 +/- 50 pA/cell in the CCD and CNT, respectively, they were below the level of detection in the ICs. We conclude that ICs have BK channel densities that are sufficient to support renal secretion of K(+) if cell Ca(2+) is elevated. However. a pathway for K(+) entry into these cells has not been identified.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00191.2006DOI Listing

Publication Analysis

Top Keywords

intercalated cells
12
cells identified
8
cell ca2+
8
cells
6
ics
5
high-conductance channels
4
channels intercalated
4
cells rat
4
rat distal
4
distal nephron
4

Similar Publications

Distal renal tubular acidosis (dRTA) is a significant clinical expression of Sjögren's syndrome (SS). While SS-related dRTA is traditionally linked to impaired H-ATPase, we report a unique case demonstrating selectively decreased anion exchanger 1 (AE1) expression with preserved H-ATPase expression. A 16-year-old girl with SS presented with muscle weakness, difficulty in ambulation, and severe hypokalemia.

View Article and Find Full Text PDF

Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers.

View Article and Find Full Text PDF

In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.

View Article and Find Full Text PDF

This study demonstrates the effectiveness of propidium iodide as a reliable marker for detecting dead or dying cells in frozen liver tissue sections. By comparing propidium iodide staining with the widely used Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, both methods showed consistent results in disease models such as alcohol-induced fibrosis and Western diet-induced fatty liver. Additionally, propidium iodide was successfully co-stained with other fluorescent markers, like phalloidin (for actin filaments) and antibodies targeting collagen, enabling detailed spatial analysis of dying cells within tissue.

View Article and Find Full Text PDF

While the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!