Glutamate transporters (also called excitatory amino acid transporters, EAATs) bind extracellular glutamate and transport it to intracellular space to regulate glutamate neurotransmission and to maintain extracellular glutamate concentrations below neurotoxic levels. We previously showed that isoflurane, a commonly used anesthetic, enhanced the activity of EAAT3, a major neuronal EAAT. This effect required a protein kinase C (PKC) alpha-dependent EAAT3 redistribution to the plasma membrane. In this study, we prepared COS7 cells stably expressing EAAT3 with or without mutations of potential PKC phosphorylation sites in the putative intracellular domains. Here we report that mutation of threonine 5 or threonine 498 to alanine did not affect the isoflurane effects on EAAT3. However, the mutation of serine 465 to alanine abolished isoflurane-induced increase of EAAT3 activity and redistribution to the plasma membrane. The mutation of serine 465 to aspartic acid increased the expression of EAAT3 in the plasma membrane and also abolished the isoflurane effects on EAAT3. These results suggest an essential role of serine 465 in the isoflurane-increased EAAT3 activity and redistribution and a direct effect of PKC on EAAT3. Consistent with these results, isoflurane induced an increase in phosphorylation of wild type, T5A, and T498A EAAT3, and this increase was absent in S465A and S465D. Our current results, together with our previous data that showed the involvement of PKCalpha in the isoflurane effects on EAAT3, suggest that the phosphorylation of serine 465 in EAAT3 by PKCalpha mediates the increased EAAT3 activity and redistribution to plasma membrane after isoflurane exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M603885200 | DOI Listing |
Int J Mol Sci
December 2024
Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain.
In 1999, Goodpasture antigen-binding protein (GPBP) was identified as a protein interacting with the N-terminal region of the human Goodpasture antigen, linked to collagen IV in patients with Goodpasture syndrome, an autoimmune disease. In 2003, a splice variant lacking a serine-rich domain was discovered, which is involved in the cytosolic transport of ceramide, leading to its renaming as Ceramide Transfer Protein (CERT). This dual functionality has sparked debate regarding the roles of GPBP/CERT, as they appear to participate in distinct research fields and are implicated in various pathologies.
View Article and Find Full Text PDFInt Microbiol
November 2024
Department of Botany & Microbiology College of Science, King Saud University, P.O Box 2455, 11451, Riyadh, Saudi Arabia.
Food Chem
February 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
Tamarillo is widely grown in Yunnan Province, China, and has been found that it can be used in cheese-making with a distinctive fruity flavour. However, this primary component responsible for curdling milk remains unclear. This study aimed to identify the main component in tamarillo responsible for curdling milk using proteomics and ammonium sulfate (AS) precipitation.
View Article and Find Full Text PDFProteins
February 2025
Department of Computer Science, Rutgers University, Camden, New Jersey, USA.
Phosphorylation is a substantial posttranslational modification of proteins that refers to adding a phosphate group to the amino acid side chain after translation process in the ribosome. It is vital to coordinate cellular functions, such as regulating metabolism, proliferation, apoptosis, subcellular trafficking, and other crucial physiological processes. Phosphorylation prediction in a microbial organism can assist in understanding pathogenesis and host-pathogen interaction, drug and antibody design, and antimicrobial agent development.
View Article and Find Full Text PDFHistochem Cell Biol
December 2024
Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
Coronavirus disease 2019 (COVID-19) reportedly affects male reproductive function by causing spermatogenesis dysfunction and suppressing testosterone secretion. However, the relationship between COVID-19 and impaired reproductive function, such as whether these effects on reproductive function are a direct effect of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in male reproductive organs or an indirect effect of high fever, is not known. Here, we examined whether the cell entry molecules of SARS-CoV-2, namely, ACE2, NRP1, TMPRSS2, and FURIN, are expressed in the male reproductive organs using the testes and accessory gonads of macaques during the breeding season.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!