Background: Previous investigations suggested apoptosis as a contributing factor to early failure of allograft heart valves. As myocardial apoptosis may be induced by nitric oxide (NO) release, this study investigated NO synthase [NOS-III] activation and apoptosis induction in human cryopreserved allografts during the thawing process.
Methods: Frozen myocardial tissue from ten human allograft heart valves, unsuitable for implantation, was submitted to the following conditions: (1) thawing in paraformaldehyde (Control), thawing according to the standard clinical protocol (Standard), standard-thawing with addition of the NOS-inhibitor N-omega-nitro-l-arginine (L-NA; Standard-LNA), and standard thawing with the NOS-stimulator angiotensin II (Standard-AT-II). Cryo-thin sections were investigated by immunostaining for activated NOS-III, cyclic guanosine monophosphate (cGMP), activated caspase-3, and poly-ADP-ribose polymerase (PARP). Quantitative analyses was performed by television densitometry.
Results: For activated NOS-III, gray unit values were significantly higher in the Standard and Standard-AT-II group than in the Control and Standard-LNA groups (p < 0.001). Gray unit values for cGMP, a downstream NO-signal-pathway molecule, showed results grossly corresponding to NOS-III activation. Activated caspase-3 and PARP showed high levels of expression in all groups with no significant differences.
Conclusions: Significant activation of NOS-III and subsequent NO-cGMP signal pathway occurs in human cryopreserved allografts during the thawing process and can be significantly reduced by a NOS-III inhibitor administered during thawing. Activation of the apoptosis pathway is also present after thawing, which was not correlated to NOS-III activation. Further experimental investigation focused on the time course and mechanisms of apoptosis and NOS-III activation are required to evaluate NOS and(or) apoptosis inhibitors as therapeutic strategies for improved allograft preservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.athoracsur.2006.05.094 | DOI Listing |
Biochim Biophys Acta Gen Subj
February 2023
Department of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Germany. Electronic address:
Background: There is great interest to understand causal pathophysiological correlation between obesity and diabetes mellitus (DM). Vascular endothelial dysfunction is crucially involved in pathogenesis of vascular complications in DM. Recently, increased arginase expression and activity have been described as underlying mechanisms of endothelial dysfunction in DM and vascular inflammation in obesity.
View Article and Find Full Text PDFJ Renin Angiotensin Aldosterone Syst
September 2021
Hypertension Center and Division of Nephrology and Hypertension, Georgetown University, Washington DC, USA.
Hypothesis: A lack of contraction of cerebral microarterioles to Ang II ("resilience") depends on cyclooxygenase (COX) and lipocalin type prostaglandin D sythase L-PGDS producing PGD that activates prostaglandin D type 1 receptors (DP1Rs) and nitric oxide synthase (NOS).
Materials & Methods: Contractions were assessed in isolated, perfused vessels and NO by fluorescence microscopy.
Results: The mRNAs of penetrating intraparenchymal cerebral microarterioles versus renal afferent arterioles were >3000-fold greater for L-PGDS and DP1R and 5-fold for NOS III and COX 2.
Am J Physiol Heart Circ Physiol
October 2017
Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
Augmented vasoconstrictor reactivity is thought to play an important role in the development of chronic hypoxia (CH)-induced neonatal pulmonary hypertension. However, whether this response to CH results from pulmonary endothelial dysfunction and reduced nitric oxide (NO)-mediated vasodilation is not well understood. We hypothesized that neonatal CH enhances basal tone and pulmonary vasoconstrictor sensitivity by limiting NO-dependent pulmonary vasodilation.
View Article and Find Full Text PDFPLoS One
February 2016
Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Buenos Aires, Argentina.
The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules.
View Article and Find Full Text PDFHistol Histopathol
November 2012
Department of Histology and Embryology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.
Anabolic-androgenic steroids (AAS) and exercise share comparable effects on myogenic differentiation, force development, fiber growth and skeletal muscle plasticity. The participation of nitric oxide synthase (NOS) on these effects was only demonstrated in response to exercise. Using immunohistochemistry and western blotting we examined the effect of AAS on the expression of NOS I and III isoforms in three muscles, distinct metabolically and physiologically: soleus (SOL), tibialis anterioris (TA) and gastrocnemius (GAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!