Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including craniospinal irradiation, nucleoside analogs, corticosteroids, and antifolates. In this review, we describe the characteristic radiographic findings and neurocognitive deficits seen among survivors of childhood ALL. We summarize what is known about the pathophysiology of delayed treatment-related neurotoxicity, with a focus on the toxicity resulting from pharmacologic disruption of folate physiology within the central nervous system. Finally, we suggest testable strategies to ameliorate the symptoms of treatment-related neurotoxicity or decrease its incidence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrdd.20113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!