A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Localization of inositol 1,4,5-trisphosphate receptors in mouse retinal ganglion cells. | LitMetric

Inositol 1,4,5-trisphosphate receptors (IP(3)R) are ligand-gated intracellular Ca(2+)channels that mediate release of Ca(2+) from intracellular stores into the cytosol on activation by second messenger IP(3.). Similarly, IP(3)R mediated changes in cytosolic Ca(2+) concentrations control neuronal functions ranging from synaptic transmission to differentiation and apoptosis. IP(3)R-generated cytosolic Ca(2+) transients also control intracellular Ca(2+) release and subsequent retinal ganglion cell (RGC) physiology and pathophysiology. The distribution of IP(3)R isotypes in primary adult mouse RGC cultures was determined to identify molecular substrates of IP(3)R mediated signaling in these neurons. Immunocytochemical labeling of IP(3)Rs in retinal sections and cultured RGCs was carried out using isoform specific antibodies and was detected with fluorescence microscopy. RGCs were identified by the use of morphologic criteria and RGC-specific immunocytochemical markers, neurofilament 68 kDa, Thy 1.1, and Thy 1.2. RGC morphology and immunoreactivity to neurofilament 68 kDa and Thy 1.1 or Thy 1.2 were identified in both RGC primary cultures and tissue cryosections. RGCs showed localization on intracellular membranes with a differential distribution of IP(3)R isoforms 1, 2, and 3. IP(3)R Types 1 and 3 were detected intracellularly throughout the cell whereas Type 2 was expressed predominantly in soma. Expression of all three IP(3)Rs by RGCs indicates that all IP(3)R types potentially play a role in Ca(2+) homeostasis and Ca(2+) signaling in these cells. Differential localization of IP(3) receptor subtypes in combination with biophysical properties of IP(3)R types may be an important molecular mechanism by which RGCs organize their cytosolic Ca(2+) signals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.21090DOI Listing

Publication Analysis

Top Keywords

cytosolic ca2+
12
ip3r types
12
inositol 145-trisphosphate
8
145-trisphosphate receptors
8
retinal ganglion
8
ip3r
8
ip3r mediated
8
distribution ip3r
8
neurofilament kda
8
kda thy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!