Salmonella enterica, like many gram-negative pathogens, uses type three secretion systems (TTSS) to infect its hosts. The three TTSS of Salmonella, namely, TTSS-1, TTSS-2, and flagella, play a major role in the virulence of this bacterium, allowing it to cross the intestinal barrier and to disseminate systemically. Previous data from our laboratory have demonstrated the involvement of the chromosomal region harboring the yfgL, engA, and yfgJ open reading frames in S. enterica serovar Enteritidis virulence. Using microarray analysis and real-time reverse transcription-PCR after growth of bacterial cultures favorable for either TTSS-1 or TTSS-2 expression, we show in this study that the deletion in S. enterica serovar Enteritidis of yfgL, encoding an outer membrane lipoprotein, led to the transcriptional down-regulation of most Salmonella pathogenicity island 1 (SPI-1), SPI-2, and flagellar genes encoding the TTSS structural proteins and effector proteins secreted by these TTSS. In line with these results, the virulence of the DeltayfgL mutant was greatly attenuated in mice. Moreover, even if YfgL is involved in the assembly of outer membrane proteins, the regulation of TTSS expression observed was not due to an inability of the Delta yfgL mutant to assemble TTSS in its membrane. Indeed, when we forced the transcription of SPI-1 genes by constitutively expressing HilA, the secretion of the TTSS-1 effector protein SipA was restored in the culture supernatant of the mutant. These results highlight the crucial role of the outer membrane lipoprotein YfgL in the expression of all Salmonella TTSS and, thus, in the virulence of Salmonella. Therefore, this outer membrane protein seems to be a privileged target for fighting Salmonella.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1828421 | PMC |
http://dx.doi.org/10.1128/IAI.00716-06 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!