AI Article Synopsis

  • * Results show that while UDPM has weak tumor-initiating activity, it significantly delays the start of tumors caused by B[a]P and does not affect the tumor initiation from DB[a,l]P.
  • * The findings indicate that other components in mixtures, like UDPM, can change how effectively PAHs cause cancer by inhibiting certain enzymes involved in PAH activation and increasing DNA damage.

Article Abstract

The polycyclic aromatic hydrocarbons (PAHs) benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[a,l]P) are well-studied environmental carcinogens, however, their potency within a complex mixture is uncertain. We investigated the influence of urban dust particulate matter (UDPM) on the bioactivation and tumor initiation of B[a]P and DB[a,l]P in an initiation-promotion tumorigenesis model. SENCAR mice were treated topically with UDPM or in combination with B[a]P or DB[a,l]P, followed by weekly application of the promoter 12-O-tetradecanoylphorbol-13 acetate. UDPM exhibited weak tumor-initiating activity but significantly delayed the onset of B[a]P-induced tumor initiation by two-fold. When cotreated with UDPM, DB[a,l]P-treated animals displayed no significant difference in tumor-initiating activity, compared with DB[a,l]P alone. Tumor initiation correlated with PAH-DNA adducts, as detected by (33)P-postlabeling and reversed-phase high-performance liquid chromatography. Induction of cytochrome P450 (CYP)1A1 and 1B1 proteins was also detected following UDPM treatment or cotreatment with B[a]P or DB[a,l]P, indicating PAH bioactivation. Further genotoxicity analyses by the comet assay revealed that cotreatment of UDPM plus B[a]P or DB[a,l]P resulted in increased DNA strand breaks, compared with PAH treatment alone. The metabolizing activities of CYP1A1 and CYP1B1, as measured by the 7-ethoxyresorufin O-deethylation (EROD) assay, revealed that UDPM noncompetitively inhibited CYP1A1 and CYP1B1 EROD activity in a dose-dependent manner. Overall, these data suggest that components within complex mixtures can alter PAH-induced carcinogenesis by inhibiting CYP bioactivation and influence other genotoxic effects, such as oxidative DNA damage. These data further suggest that in addition to the levels of potent PAH, the effects of other mixture components must be considered when predicting human cancer risk.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfl137DOI Listing

Publication Analysis

Top Keywords

b[a]p db[al]p
16
cyp1a1 cyp1b1
12
tumor initiation
12
urban dust
8
dust particulate
8
particulate matter
8
pah-induced carcinogenesis
8
tumor-initiating activity
8
assay revealed
8
udpm
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!