Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A.

Plant J

Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot (Valencia), Spain.

Published: December 2006

Plant cells possess much of the molecular machinery necessary for receptor-mediated endocytosis (RME), but this process still awaits detailed characterization. In order to identify a reliable and well-characterized marker to investigate RME in plant cells, we have expressed the human transferrin receptor (hTfR) in Arabidopsis protoplasts. We have found that hTfR is mainly found in endosomal (Ara7- and FM4-64-positive) compartments, but also at the plasma membrane, where it mediates binding and internalization of its natural ligand transferrin (Tfn). Cell surface expression of hTfR increases upon treatment with tyrphostin A23, which inhibits the interaction between the YTRF endocytosis signal in the hTfR cytosolic tail and the mu2-subunit of the AP2 complex. Indeed, tyrphostin A23 inhibits Tfn internalization and redistributes most of hTfR to the plasma membrane, suggesting that the endocytosis signal of hTfR is functional in Arabidopsis protoplasts. Co-immunoprecipitation experiments show that hTfR is able to interact with a mu-adaptin subunit from Arabidopsis cytosol, a process that is blocked by tyrphostin A23. In contrast, treatment with brefeldin A, which inhibits recycling from endosomes back to the plasma membrane in plant cells, leads to the accumulation of Tfn and hTfR in larger patches inside the cell, reminiscent of BFA compartments. Therefore, hTfR has the same trafficking properties in Arabidopsis protoplasts as in animal cells, and cycles between the plasma membrane and endosomal compartments. The specific inhibition of Tfn/hTfR internalization and recycling by tyrphostin A23 and BFA, respectively, thus provide valuable molecular tools to characterize RME and the recycling pathway in plant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2006.02909.xDOI Listing

Publication Analysis

Top Keywords

plant cells
20
tyrphostin a23
20
plasma membrane
16
arabidopsis protoplasts
12
htfr
9
human transferrin
8
transferrin receptor
8
a23 inhibits
8
endocytosis signal
8
signal htfr
8

Similar Publications

Algae extract-based nanoemulsions for photoprotection against UVB radiation: an electrical impedance spectroscopy study.

Sci Rep

January 2025

Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N° 45-03, Bogotá D.C., Colombia.

Skin cancer is one of the most common types of cancer worldwide, with exposure to UVB radiation being a significant risk factor for its development. To prevent skin cancer, continuous research efforts have focused on finding suitable photoprotective ingredients from natural sources that are also environmentally friendly. This study aimed to develop oil-in-water photoprotective nanoemulsions containing marine macroalgae extract.

View Article and Find Full Text PDF

Reactivation of cell division is crucial for the regeneration of damaged tissues, which is a fundamental process across all multicellular organisms. However, the mechanisms underlying the activation of cell division in plants during regeneration remain poorly understood. Here, we show that single-cell endodermal ablation generates a transient change in the local mechanical pressure on neighboring pericycle cells to activate patterned cell division that is crucial for tissue regeneration in Arabidopsis roots.

View Article and Find Full Text PDF

Bougainvillea glabra-mediated synthesis of Zr₃O and chitosan-coated zirconium oxide nanoparticles: Multifunctional antibacterial and anticancer agents with enhanced biocompatibility.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:

The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.

View Article and Find Full Text PDF

Dual ferroptosis induction in N2-TANs and TNBC cells via FTH1 targeting: A therapeutic strategy for triple-negative breast cancer.

Cell Rep Med

January 2025

Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Tumor-associated neutrophils (TANs) play a critical role in the progression and prognosis of triple-negative breast cancer (TNBC), with N2-type TANs known for their pro-tumor characteristics. This study introduces CT-1, a derivative of cryptotanshinone that effectively suppresses TNBC growth while selectively reducing the proportion of N2-type TANs within tumor tissue. Notably, CT-1 induces simultaneous ferroptosis in both N2-type TANs and TNBC cells, a dual mechanism that enhances its therapeutic efficacy.

View Article and Find Full Text PDF

APE1-Activated and NIR-II Photothermal-Enhanced Chemodynamic Therapy Guided by Amplified Fluorescence Imaging.

Anal Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.

The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!