We performed a global-minimum search for low-lying neutral clusters (Au(n)) in the size range of n=15-19 by means of basin-hopping method coupled with density functional theory calculation. Leading candidates for the lowest-energy clusters are identified, including four for Au(15), two for Au(16), three for Au(17), five for Au(18), and one for Au(19). For Au(15) and Au(16) we find that the shell-like flat-cage structures dominate the population of low-lying clusters, while for Au(17) and Au(18) spherical-like hollow-cage structures dominate the low-lying population. The transition from flat-cage to hollow-cage structure is at Au(17) for neutral gold clusters, in contrast to the anion counterparts for which the structural transition is at Au(16) (-) [S. Bulusu et al., Proc. Natl. Acad. Sci. U.S.A. 103, 8362 (2006)]. Moreover, the structural transition from hollow-cage to pyramidal structure occurs at Au(19). The lowest-energy hollow-cage structure of Au(17) (with C(2v) point-group symmetry) shows distinct stability, either in neutral or in anionic form. The distinct stability of the hollow-cage Au(17) calls for the possibility of synthesizing highly stable core/shell bimetallic clusters M@Au(17) (M=group I metal elements).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2352755 | DOI Listing |
Chem Asian J
January 2025
China Three Gorges University, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, CHINA.
The Keggin clusters are one kind of the most representative molecular structures in the field of metal-oxo clusters. Although the different types of Keggin clusters with various components were reported, the research about γ-Keggin isomer remains less developed. This is ascribed to the difficulty in obtaining the stable pure γ-Keggin cluster for the structural isomerization.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina. Electronic address:
The interest in chemical interactions between inorganic sulfur species and heme compounds has grown significantly in recent years due to their physiological relevance. The model system ferric N-acetyl microperoxidase 11 (NAcMP11Fe) enables the exploration of the mechanistic aspects of the interaction between the ferric heme group and binding sulfur ligands, without the constraints imposed by a protein matrix and the stabilizing effects of distal amino acids. In this study, we investigated the coordination of disulfane (HSSH) and its conjugate base hydrodisulfide (HSS) to NAcMP11Fe.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.
View Article and Find Full Text PDFOrganometallics
January 2025
Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
We report the synthesis and characterization of a series of high- and low-spin dicobalt complexes of the PNNP expanded pincer ligand. Reacting this dinucleating ligand in its neutral form with two equiv of CoCl(tetrahydrofuran) yields a high-spin dicobalt complex featuring one Co inside and one Co outside of the dinucleating pocket. Performing the same reaction in the presence of two equivalents of KOtBu provides access to a high-spin dicobalt complex wherein both Co centers are bound within the PNNP pocket, and this complex also features a bridging OtBu ligand.
View Article and Find Full Text PDFNat Commun
January 2025
School of Nano-Technology and Nano-Bionics, University of Science and Technology of China, Hefei, China.
Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!