Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-alpha-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative of a type II membrane protein structure. Soluble secreted forms of the corresponding proteins expressed in insect cells showed xylosyltransferase activity, transferring d-xylose from UDP-alpha-d-xylose to l-fucose. The disaccharide product was hydrolyzed by alpha-xylosidase, whereas no reaction was catalyzed by beta-xylosidase. Furthermore, the regio- and stereochemistry of the methyl xylosyl-fucoside was determined by nuclear magnetic resonance to be an alpha-(1,3) linkage, demonstrating the isolated glycosyltransferases to be (1,3)-alpha-d-xylosyltransferases. This particular linkage is only known in rhamnogalacturonan-II, a complex polysaccharide essential to vascular plants, and is conserved across higher plant families. Rhamnogalacturonan-II isolated from both RGXT1 and RGXT2 T-DNA insertional mutants functioned as specific acceptor molecules in the xylosyltransferase assay. Expression of RGXT1- and RGXT2-enhanced green fluorescent protein constructs in Arabidopsis revealed that both fusion proteins were targeted to a Brefeldin A-sensitive compartment and also colocalized with the Golgi marker dye BODIPY TR ceramide, consistent with targeting to the Golgi apparatus. Taken together, these results suggest that RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-d-xylosyltransferases involved in the biosynthesis of pectic rhamnogalacturonan-II.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1626629 | PMC |
http://dx.doi.org/10.1105/tpc.105.036566 | DOI Listing |
Glycoconj J
December 2009
Cell Wall Biology and Molecular Plant Virology, Institute of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus and Centre for Pro-Active Plants (VKR), Thorvaldsensvej 40, Frederiksberg, 1871, Denmark.
Two Arabidopsis xylosyltransferases, designated RGXT1 and RGXT2, were recently expressed in Baculovirus transfected insect cells and by use of the free sugar assay shown to catalyse transfer of D-xylose from UDP-alpha-D-xylose to L-fucose and derivatives hereof. We have now examined expression of RGXT1 and RGXT2 in Pichia pastoris and compared the two expression systems. Pichia transformants, expressing soluble, secreted forms of RGXT1 and RGXT2 with an N- or C-terminal Flag-tag, accumulated recombinant, hyper-glycosylated proteins at levels between 6 and 16 mg protein * L(-1) in the media fractions.
View Article and Find Full Text PDFPlant Cell
October 2006
Biotechnology Group, Danish Institute of Agricultural Sciences and Center for Molecular Plant Physiology, DK-1871 Frederiksberg C, Denmark.
Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-alpha-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative of a type II membrane protein structure. Soluble secreted forms of the corresponding proteins expressed in insect cells showed xylosyltransferase activity, transferring d-xylose from UDP-alpha-d-xylose to l-fucose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!