Endoreduplication of human smooth muscle cells induced by 2-methoxyestradiol: a role for cyclin-dependent kinase 2.

Am J Physiol Heart Circ Physiol

Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Univ of Calgary, Calgary, Alberta, Canada.

Published: March 2007

Endoreduplication has been suggested to contribute to the development of hypertrophy of smooth muscle cells (SMCs) in hypertension. However, endoreduplication in vascular SMCs and the underlying molecular mechanisms are not clear. Treatment of human SMCs with 10 microM 2-methoxyestradiol (2-ME) for 24 h induces accumulation of cells with > or =4N DNA content, and some polyploid/aneuploid cells actively synthesize their DNA, suggesting the occurrence of endoreduplication. In addition, 2-ME treatment upregulates the expression of cyclin-dependent kinase 2 (Cdk2). The present study was designed to characterize endoreduplication of human SMCs and explore the potential roles of Cdk2 in endoreduplication induced by 2-ME. Treatment with 2-ME (10 microM) for 2-4 days not only caused increases in >4N cells and their reentry into S phase but also induced overduplication of chromosomes. Furthermore, 2-ME increased the kinase activity of Cdk2 and its interaction with cyclin E. Inducible overexpression of dominant-negative Cdk2 in human SMCs inhibited both DNA synthesis of >4N cells and the accumulation of >4N cells induced by 2-ME. We conclude that 2-ME induces endoreduplication of human SMCs and Cdk2 plays an important role in endoreduplication in response to 2-ME.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00867.2006DOI Listing

Publication Analysis

Top Keywords

human smcs
16
endoreduplication human
12
>4n cells
12
endoreduplication
8
smooth muscle
8
muscle cells
8
cells induced
8
cyclin-dependent kinase
8
2-me
8
2-me induces
8

Similar Publications

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Gallbladder-derived retinoic acid signalling drives reconstruction of the damaged intrahepatic biliary ducts.

Nat Cell Biol

January 2025

State Key laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China.

Severe damage to the intrahepatic biliary duct (IHBD) network occurs in multiple human advanced cholangiopathies, such as primary sclerosing cholangitis, biliary atresia and end-stage primary biliary cholangitis. Whether and how a severely damaged IHBD network could reconstruct has remained unclear. Here we show that, although the gallbladder is not directly connected to the IHBD, there is a common hepatic duct (CHD) in between, and severe damage to the IHBD network induces migration of gallbladder smooth muscle cells (SMCs) to coat the CHD in mouse and zebrafish models.

View Article and Find Full Text PDF

Stumbles, Gait, and Cognition: Risk Factors Associated with Falls in Older Adults with Subjective Memory Complaints.

Int J Environ Res Public Health

December 2024

Neurology Department, Fundación Valle del Lili, Carrera 98 No. 18-49, Cali 760032, Colombia.

Falls are a public health problem, impacting quality of life, independence, and health costs. Subjective memory complaints (SMCs) and mild cognitive impairment (MCI) increase with age and may coexist. The risk of falls coinciding with SMCs is less understood.

View Article and Find Full Text PDF

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!