Complementarity between epsilon and phi sequences in pregenomic RNA influences hepatitis B virus replication efficiency.

Virology

Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612, USA.

Published: March 2007

AI Article Synopsis

Article Abstract

Hepatitis B virus (HBV) replication requires the viral polymerase to reverse transcribe the 3.5-kb pregenomic viral RNA within the nucleocapsid. It has been proposed that a sequence element designated phi (phi), which is located 32 nucleotides upstream of the 3' DR1 pregenomic RNA sequence and is complementary to epsilon, is required for efficient minus-strand synthesis because it may mediate the translocation of the viral polymerase plus the three nucleotide primer from epsilon to DR1. A mutation in phi has been identified which can be compensated for with a complementary mutation in epsilon. This observation supports the suggestion that epsilon and phi base pair during the process of polymerase translocation from epsilon to DR1. However, additional mutations in phi were not complemented by the corresponding mutations in epsilon indicating that the functional recognition of epsilon and epsilon/phi stem-loop structures by polymerase probably requires both sequence- and structure-specific information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850982PMC
http://dx.doi.org/10.1016/j.virol.2006.08.036DOI Listing

Publication Analysis

Top Keywords

epsilon phi
8
pregenomic rna
8
hepatitis virus
8
viral polymerase
8
epsilon dr1
8
epsilon
7
phi
6
complementarity epsilon
4
phi sequences
4
sequences pregenomic
4

Similar Publications

Enhanced Circularly Polarized Green Luminescence Metrics from New Enantiopure Binary -Pyrazolonate-Tb Complexes.

Molecules

December 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, China.

Achieving superior circularly polarized luminescence brightness () is an important subject and continuous challenge for chiroptical materials. Herein, by applying a binary molecular design for the synthesis of chiral organo-Tb molecules, a novel pair of mononuclear chiral -pyrazolate-Tb enantiomers, [Tb(PMIP)(,-Ph-PyBox)] () and [Tb(PMIP)(,-Ph-PyBox)] (), have been synthesized and characterized. The three 1-phenyl-3-methyl-4-(isobutyryl)-5-pyrazolone () ligands play the role of efficient luminescence sensitizers and strong light-harvesting antennas, while the enantiopure 2,6-bis(4-phenyl-2-oxazolin-2-yl) pyridine ligand (/) is employed as the strong point-chiral inducer.

View Article and Find Full Text PDF

Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores.

J Am Chem Soc

January 2025

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China.

Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (-DAPBF) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters.

View Article and Find Full Text PDF

We report the synthesis and characterization of two chiral binuclear iridium(III) complexes ( and ) prepared from enantiopure building blocks [μ-Cl(Δ-Ir(C^N))] and [μ-Cl(Λ-Ir(C^N))]. These building blocks have been obtained by chiral preparative high-performance liquid chromatography of the neutral iridium(III) complex (piv = 2,2,6,6-tetramethylheptane-3,5-dionate) followed by selective degradation of the ancillary ligand. For comparison purposes, we also synthesized a monomer () and a dimer (, mixture).

View Article and Find Full Text PDF
Article Synopsis
  • Nonreciprocal thermal radiation can differ in emissivity at specific angles, challenging traditional Kirchhoff's law, and creating opportunities for thermal emitters that don’t rely on magnetic fields.
  • The proposed mid-infrared thermal emitter operates between 12 μm to 20 μm with a wide angular range of 16° to 88°, utilizing a multilayered structure of Weyl semimetals and dielectrics.
  • This innovation optimizes emissivity across various angles and wavelengths, indicating potential applications in areas like radiative cooling, medical sensing, and energy conversion.
View Article and Find Full Text PDF

Dicyanovinyl-modified uracil produces fluorescent molecular rotors (FMR) that display massively red-shifted emission and huge Stokes shifts. They are exemplified by DCVSU - an intrinsically fluorescent nucleobase analog (IFNA) with the longest emission wavelength of 592 nm (DMSO) reported thus far which also shows strong polarity sensitivity and large Stokes shift ( = 181 nm). The IFNAs exhibited typical molecular rotor response to solvent viscosity with brightnesses ( × ) of up to 8700 cm M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!