How to build a biofilm: a fungal perspective.

Curr Opin Microbiol

Department of Microbiology, Hammer Health Sciences Center, Room 906, 701 W 168th Street, New York, NY 10032, USA.

Published: December 2006

Biofilms are differentiated masses of microbes that form on surfaces and are surrounded by an extracellular matrix. Fungal biofilms, especially those of the pathogen Candida albicans, are a cause of infections associated with medical devices. Such infections are particularly serious because biofilm cells are relatively resistant to many common antifungal agents. Several in vitro models have been used to elucidate the developmental stages and processes required for C. albicans biofilm formation, and recent studies have begun to define biofilm genetic control. It is clear that cell-substrate and cell-cell interactions, hyphal differentiation and extracellular matrix production are key steps in biofilm development. Drug resistance is acquired early in biofilm formation, and appears to be governed by different mechanisms in early and late biofilms. Quorum sensing might be an important factor in dispersal of biofilm cells. The past two years have seen the emergence of several genomic strategies to uncover global events in biofilm formation and directed studies to understand more specific events, such as hyphal formation, in the biofilm setting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2006.10.003DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
extracellular matrix
8
biofilm
8
biofilm cells
8
build biofilm
4
biofilm fungal
4
fungal perspective
4
perspective biofilms
4
biofilms differentiated
4
differentiated masses
4

Similar Publications

Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.

View Article and Find Full Text PDF

Biofilm characterisation of Mycoplasma bovis co-cultured with Trueperella pyogenes.

Vet Res

January 2025

Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

Mycoplasma pneumonia, caused by Mycoplasma bovis (Mycoplasmopsis bovis; M. bovis), is linked with severe inflammatory reactions in the lungs and can be challenging to treat with antibiotics. Biofilms play a significant role in bacterial persistence and contribute to the development of chronic lesions.

View Article and Find Full Text PDF

Epidemiological and molecular characteristics of extraintestinal pathogenic escherichia coli isolated from diseased cattle and sheep in Xinjiang, China from 2015 to 2019.

BMC Vet Res

January 2025

State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China.

Escherichia coli has become a common causative agent of infections in animals, inflicting serious economic losses on livestock production and posing a threat to public health. Escherichia coli infection is common and tends to be complex in Xinjiang, a major region of cattle and sheep breeding in China. This study aims to explore the current status and molecular characteristics of Escherichia coli infection in cattle and sheep in Xinjiang, as part of the disease prevention and control strategy.

View Article and Find Full Text PDF

Pyomelanogenic P. aeruginosa, frequently isolated from patients with urinary tract infections and cystic fibrosis, possesses the ability to withstand oxidative stress, contributing to virulence and resulting in persistent infections. Whole genome sequence analysis of U804, a pyomelanogenic, multidrug-resistant, clinical isolate, demonstrates the mechanism underlying pyomelanin overproduction.

View Article and Find Full Text PDF

Infections associated with urinary catheters are often caused by biofilms composed of various bacterial species that form on the catheters' surfaces. In this study, we investigated the intricate interplay between Escherichia coli and Enterococcus faecalis during biofilm formation on urinary catheter segments using a dual-species culture model. We analyzed biofilm formation and global proteomic profiles to understand how these bacteria interact and adapt within a shared environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!