During the 2003 Severe Acute Respiratory Syndrome (SARS) outbreak, traditional intervention measures such as quarantine and border control were found to be useful in containing the outbreak. We used laboratory verified SARS case data and the detailed quarantine data in Taiwan, where over 150,000 people were quarantined during the 2003 outbreak, to formulate a mathematical model which incorporates Level A quarantine (of potentially exposed contacts of suspected SARS patients) and Level B quarantine (of travelers arriving at borders from SARS affected areas) implemented in Taiwan during the outbreak. We obtain the average case fatality ratio and the daily quarantine rate for the Taiwan outbreak. Model simulations is utilized to show that Level A quarantine prevented approximately 461 additional SARS cases and 62 additional deaths, while the effect of Level B quarantine was comparatively minor, yielding only around 5% reduction of cases and deaths. The combined impact of the two levels of quarantine had reduced the case number and deaths by almost a half. The results demonstrate how modeling can be useful in qualitative evaluation of the impact of traditional intervention measures for newly emerging infectious diseases outbreak when there is inadequate information on the characteristics and clinical features of the new disease-measures which could become particularly important with the looming threat of global flu pandemic possibly caused by a novel mutating flu strain, including that of avian variety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094157PMC
http://dx.doi.org/10.1016/j.jtbi.2006.09.015DOI Listing

Publication Analysis

Top Keywords

level quarantine
16
sars outbreak
8
traditional intervention
8
intervention measures
8
quarantine
8
taiwan outbreak
8
outbreak
7
sars
6
impact quarantine
4
quarantine 2003
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!