SV40 chromosomes undergoing transcription operationally defined by the presence of RNA polymerase II (RNAPII) were immune-selected with antibody to RNAPII and subjected to secondary chromatin immunoprecipitation with antibodies to hyperacetylated or unacetylated H4 or H3. Immune selection fragmentation and immunoprecipitation was used to determine the hyperacetylation status of histones independent of the location of the RNAPII and Re chromatin immunoprecipitation was used to determine their hyperacetylation status when associated with RNAPII. While hyperacetylated H4 and H3 were found in the coding regions regardless of the location of RNAPII, unacetylated H4 and H3 were found only at sites lacking RNAPII. The absence of unacetylated H4 and H3 at sites containing RNAPII was correlated with the specific association of the histone acetyl transferase p300 with the RNAPII. In contrast, the presence of unacetylated H4 and H3 at sites lacking RNAPII was shown to result from the action of a histone deacetylase based upon the effects of the inhibitor sodium butyrate. These results suggest that the extent of hyperacetylation of H4 and H3 during transcription alternates between hyperacetylation directed by an RNAPII associated histone acetyl transferase and deacetylation directed by a histone deacetylase at other sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847586 | PMC |
http://dx.doi.org/10.1016/j.jmb.2006.09.044 | DOI Listing |
J Biol Chem
October 2024
Department of Life Sciences, Korea University, Seoul, South Korea. Electronic address:
Nα-terminal acetylation in eukaryotic proteins creates specific degradation signals (Ac/N-degrons) targeted for ubiquitin-mediated proteolysis via the Ac/N-degron pathway. Despite the identification of key components of the Ac/N-degron pathway over the past 15 years, the precise recognition domain (Ac/N domain) remains unclear. Here, we defined the Ac/N domain of the endoplasmic reticulum MARCHF6 E3 ubiquitin ligase through a systematic analysis of its cytosol-facing regions using alanine-stretch mutagenesis, chemical crosslinking-based co-immunoprecipitation-immunoblotting, and split-ubiquitin assays in human and yeast cells.
View Article and Find Full Text PDFFront Microbiol
May 2024
Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.
N-lysine acetylation is recognized as a prevalent post-translational modification (PTM) that regulates proteins across all three domains of life. In , the histone-like protein HBsu is acetylated at seven sites, which regulates DNA compaction and the process of sporulation. In Mycobacteria, DNA compaction is a survival strategy in response antibiotic exposure.
View Article and Find Full Text PDFFront Microbiol
January 2022
Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States.
produces dormant, highly resistant endospores in response to extreme environmental stresses or starvation. These spores are capable of persisting in harsh environments for many years, even decades, without essential nutrients. Part of the reason that these spores can survive such extreme conditions is because their chromosomal DNA is well protected from environmental insults.
View Article and Find Full Text PDFBiochemistry
September 2019
Genome Integrity and Structural Biology Laboratory , National Institute of Environmental Health Sciences, Research Triangle Park , North Carolina 27709 , United States.
Deciphering factors modulating DNA repair in chromatin is of great interest because nucleosomal positioning influences mutation rates. H3K56 acetylation (Ac) is implicated in chromatin landscape regulation, impacting genomic stability, yet the effect of H3K56Ac on DNA base excision repair (BER) remains unclear. We determined whether H3K56Ac plays a role in regulating AP site incision by AP endonuclease 1 (APE1), an early step in BER.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2019
Public Health Research Institute Center of New Jersey Medical School, Rutgers University, Newark, NJ 07103
N-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!