The existence of a functional interplay between alpha(2)-adrenoceptor and opioid receptor inhibitory pathways modulating neurotransmitter release has been demonstrated in the enteric nervous system by development of sensitivity changes to alpha(2)-adrenoceptor, mu- and kappa-opioid receptor agents on enteric cholinergic neurons after chronic sympathetic denervation. In the present study, to further examine this hypothesis we evaluated whether manipulation of alpha(2)-adrenoceptor pathways by chronic treatment with the antidepressant drug, desipramine (10 mg/kg i.p. daily, for 21 days), could entail changes in enteric mu- and kappa-opioid receptor pathways in the myenteric plexus of the guinea pig distal colon. In this region, subsensitivity to the inhibitory effect of both UK14,304 and U69,593, respectively alpha(2A)-adrenoceptor and kappa-opioid receptor agonist, on the peristaltic reflex developed after chronic desipramine treatment. On opposite, in these experimental conditions, supersensitivity developed to the inhibitory effect of [D-Ala, N-Me-Phe4-Gly-ol5]-enkephalin (DAMGO), mu-opioid receptor agonist, on propulsion velocity. Immunoreactive expression levels of alpha(2A)-adrenoceptors, mu- and kappa-opioid receptors significantly decreased in the myenteric plexus of the guinea pig colon after chronic desipramine treatment. In these experimental conditions, mRNA levels of alpha(2A)-adrenoceptors, mu- and kappa-opioid receptors significantly increased, excluding a direct involvement of transcription mechanisms in the regulation of receptor expression. Levels of G protein-coupled receptor kinase 2/3 and of inhibitory G(i/o) proteins were significantly reduced in the myenteric plexus after chronic treatment with desipramine. Such changes might represent possible molecular mechanisms involved in the development of subsensitivity to UK14,304 and U69,593 on the efficiency of peristalsis. Alternative molecular mechanisms, including a higher efficiency in the coupling between receptor activation and downstream intracellular effector systems, possibly independent from inhibitory G(i/o) proteins, may be accounted for the development of supersensitivity to DAMGO. Increased sensitivity to the mu-opioid agonist might compensate for the development of alpha(2A)-adrenoceptor and kappa-opioid receptor subsensitivity. On the whole, the present data further strengthen the concept that, manipulation of alpha(2)-adrenergic inhibitory receptor pathways in the enteric nervous system entails changes in opioid inhibitory receptor pathways, which might be involved in maintaining homeostasis as suggested for mu-opioid, but not for kappa-opioid receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2006.09.025DOI Listing

Publication Analysis

Top Keywords

mu- kappa-opioid
20
kappa-opioid receptors
16
myenteric plexus
16
kappa-opioid receptor
16
guinea pig
12
chronic desipramine
12
desipramine treatment
12
receptor pathways
12
receptor
11
kappa-opioid
8

Similar Publications

The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation.

View Article and Find Full Text PDF

Insights into the interaction between hemorphins and δ-opioid receptor from molecular modeling.

Front Mol Biosci

December 2024

Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.

Hemorphins are short atypical opioid peptide fragments embedded in the β-chain of hemoglobin. They have received considerable attention recently due to their interaction with opioid receptors. The affinity of hemorphins to opioid receptors μ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR) has been well established.

View Article and Find Full Text PDF

Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range.

View Article and Find Full Text PDF

The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level.

Neuroscience

January 2025

Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:

Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.

View Article and Find Full Text PDF

GPR88 impairs the signaling of kappa opioid receptors in a heterologous system and in primary striatal neurons.

Neuropharmacology

March 2025

Network Center for Biomedical Research in Neurodegenerative Diseases. CiberNed., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Molecular Neurobiology Laboratory, Dept. Biochemistry and Molecular Biomedicine, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain. Electronic address:

Article Synopsis
  • GPR88 is an orphan G protein-coupled receptor primarily found in the striatum, and its function is not well understood despite changes in its expression seen in Parkinson's disease models.
  • GPR88 was found to interact with the kappa-opioid receptor (KOR), and this interaction inhibits KOR-mediated signaling, as evidenced by experiments showing that GPR88 can modulate effects of KOR agonists in both cultured cells and primary striatal neurons.
  • The GPR88-KOR complexes were more common in specific neurons related to dopamine pathways, suggesting that understanding their relationship could have implications for conditions like neuropathic pain, Parkinson's disease, and neuropsychiatric disorders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!