It was determined that tumor necrosis factor (TNF) is capable of decreasing the local brain's blood flow on 45.6% (in the concentration of 6 micrograms/kg); to make a spasm of the pial arteries on 39.6%. In vitro experiments TNF increased the amplitude of the rhythmical and the tonic contractions of the brain's arteries smooth muscles (3.6 X 10(-8) M). The direct action of the TNF in the vascular wall is endothelium-dependent.

Download full-text PDF

Source

Publication Analysis

Top Keywords

tumor necrosis
8
necrosis factor
8
[effects tumor
4
factor tonus
4
tonus cerebral
4
cerebral arteries]
4
arteries] determined
4
determined tumor
4
factor tnf
4
tnf capable
4

Similar Publications

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.

View Article and Find Full Text PDF

Inflammatory proteins related to depression in multiple sclerosis: A systematic review and meta-analysis.

Brain Behav Immun Health

February 2025

Mood and Anxiety Disorders Lab, Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia.

Background: Up to 50% of individuals with multiple sclerosis (MS) experience depression. Depression has been accompanied by increases in inflammatory proteins. This meta-analysis summarized the data on inflammatory protein concentrations and level of depression in individuals with MS.

View Article and Find Full Text PDF

Effect of hybrid blood purification on nutritional status, inflammation, and cardiovascular events in patients with end-stage renal disease.

Pak J Med Sci

January 2025

Rong Zou Department of Nephrology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421002, P.R. China.

Objective: To explore the effects of hybrid blood purification on nutritional status and cardiovascular events in patients with end-stage renal disease (ESRD).

Methods: A total of 135 patients with ESRD who received treatment in The Affiliated Nanhua Hospital of Hengyang Medical School from March 2021 to June 2023 were included in this retrospective study. Of them, 66 patients were treated with hemodialysis purification (hemodialysis group), and 69 patients underwent hybrid blood purification (hybrid group).

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!