Objective: Noninsulinoma pancreatogenous hypoglycaemia syndrome (NIPHS), characterized by postprandial neuroglycopaenia, negative prolonged fasts and negative perioperative localization studies for insulinoma, but positive selective arterial calcium stimulation tests and nesidioblastosis in the gradient-guided resected pancreas, is a rare hypoglycaemic disorder of undetermined aetiology. We analysed the clinical, morphological and immunohistological features to further clarify the aetiology and pathogenesis of this rare disease.
Patients: Ten consecutive patients with NIPHS (nine men and one woman, aged 29-78 years) were included in the study. Six of the 10 received a gradient-guided subtotal (70%) or distal (50%) pancreatectomy. In the remaining four patients, diazoxide treatment was initiated and the precise mechanism of its action was assessed by meal tests.
Results: All of the patients showed a combination of postprandial neuroglycopaenia, negative prolonged fasts (except one patient) and negative localization studies for insulinoma, but positive calcium stimulation tests and nesidioblastosis in the gradient-guided resected pancreas. Immunohistological studies of the resected pancreatic tissues revealed neither an increased rate of proliferation of beta-cells nor an abnormal synthesis and/or processing of either proinsulin or amylin. Evidence of overexpression of the two pancreatic differentiation factors, PDX-1 and Nkx-6.1, as well as the calcium sensing receptor (CaSR) was absent. Nevertheless, abnormal expression of islet neogenesis-associated protein (INGAP), a human cytokine expressed only in the presence of islet neogenesis, in ducts and/or islets, was identified in three of the five patients studied. All of the six patients who received a surgical operation were relieved of further neuroglycopaenic attacks, but one patient who received a subtotal pancreatectomy developed diabetes. In the remaining four patients who received diazoxide treatment, hypoglycaemic episodes were satisfactorily controlled with an attenuated response of beta-cell peptides to meal stimulation.
Conclusions: Our results strengthen the existence of this unique clinical hypoglycaemic syndrome from beta-cell hyperfunction as well as the value of the selective arterial calcium stimulation test in its correct diagnosis and localization. The mechanisms underlying beta-cell hyperfunction and release of insulin to calcium, however, remain poorly characterized. Nevertheless, in a subset of patients with NIPHS, there exists some, as yet undefined, pancreatic humoral/paracrine factor(s) other than proinsulin, amylin, PDX-1, Nkx-6.1 and possibly glucagon-like peptide-1 (GLP-1) that are capable of inducing the INGAP gene and, if activated, will initiate ductal proliferation and islet neogenesis. As for the treatment, we recommend that diazoxide be tried first in each patient and, should it fail, a gradient-guided subtotal or distal pancreatectomy be attempted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2265.2006.02629.x | DOI Listing |
Curr Cardiol Rep
January 2025
Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China. Electronic address:
Electrical stimulation displayed tremendous potential in promoting nerve regeneration. However, the current electrical stimulation therapy required complex traversing wires and external power sources, which significantly limited its practical application. Herein, a self-powered nerve scaffold based on primary battery principle was gradient printed by laser additive manufacturing technique.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFDose Response
January 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
Cytokinins are plant hormones that regulate cell growth and differentiation. In particular, zeatin (ZTN) delays cellular senescence of human fibroblasts and keratinocytes and exhibits anticancer activity. Chemotherapy-induced anemia is a major side effect of anticancer therapy secondary to premature senescence of red blood cells (RBCs).
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!