Comparative proteome data of normal and diseased tissue samples are difficult to interpret. Proteins detected in tissues are derived from different cell types and blood constituents. Pathologic or toxicant-induced aberrations may affect the proteome profile of tissues in several ways since different cell types may respond in very different and highly specific manners. The aim of this study was to analyze the proteome profiles of purified rat liver primary cells and of blood plasma in comparison to liver whole tissue. Moreover, we investigated alterations of these profiles induced by the liver toxicant N-nitrosomorpholine (NNM) used as a model compound. Whole liver samples, pure hepatocytes and Kupffer cells as well as blood plasma were obtained from saline- or NNM-treated rats. Proteins were separated by 2-D PAGE and their amounts were estimated by fluorography. Selected proteins were identified by MS analysis of tryptic digests. Among them we identified proteins exclusively expressed in the analysed constituents. Several of these proteins were assigned in the proteome profile of whole-tissue homogenates. Furthermore, we identified several proteins that were modified, up-regulated or down-regulated due to NNM treatment in total liver homogenates. Some of these protein alterations were specifically detected in primary cells isolated from NNM-treated rats. Thus, we demonstrated the successful assignment of NNM-induced proteome alterations in rat liver to the cell type of origin. The currently applied approach may help to better understand pathologic processes at a whole-tissue level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200600017DOI Listing

Publication Analysis

Top Keywords

rat liver
12
liver tissue
8
cell types
8
proteome profile
8
primary cells
8
blood plasma
8
nnm-treated rats
8
identified proteins
8
liver
7
proteins
6

Similar Publications

Aerobic exercise (AE) is associated with a significant hypoglycemia risk in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms in the liver and skeletal muscle governing exercise-induced hypoglycemia in T1DM are poorly understood. This study examined the effects of a 60-minute bout of AE on hepatic and muscle glucose metabolism in T1DM rats.

View Article and Find Full Text PDF

Background: Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD.

Methods: Rats with MASLD were randomly assigned to undergo DJB or sham surgery.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

The damaging effects of heavy metal exposure on vital organs like the heart, liver, kidneys, and brain can be lowered by natural compounds' anti-inflammatory and anti-oxidant capacity. In the current investigation, the protective potential of savory()essential oil (EO) against lead acetate-induced multi-organ damage in rats was evaluated. Thirty female Wister Albino rats were divided into the following groups: normal, positive control given lead acetate without concomitant treatment, reference given ethylene-diamine-tetra-acetic acid and groups treated with savory EO (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!