The hemagglutinin-neuraminidase genes of the Kilham strain of mumps virus and three neutralization escape mutants (M11, M12 and M13) of this strain (Löve et al., 1985a) were sequenced using their genomes as template. The predicted amino acid sequences were compared. While one mutant had only one amino acid substitution the other two mutants had four and five respectively. A putative region for the epitope of the selected neutralizing monoclonal antibody was identified in a hydrophilic region encompassing amino acids 352-360, since the single amino acid substitution of one mutant occurred in this region and the other two mutants showed non-conserved amino acid changes in this part of the protein. The previously sequenced prototype strain RW, which lacks capacity to react with the selected neutralizing monoclonal antibody also has one non-conserved amino acid change in the region of the proposed neutralizing epitope. The three mutants showed different biological characteristics. These particular characteristics were therefore interpreted to be primarily associated with strain-specific amino acid changes outside the region of the presumed neutralizing epitope. The decrease in molecular weight in one mutant (M11) was shown to be due to a substitution in position 329 of an asparagine for an aspartic acid, leading to abolishment of a potential N-linked glycosylation site. In the other mutants, one substitution in position 239 of a lysine for a methionine was correlated with an increased neuraminidase activity of strain M12, while a substitution in position 360 of an arginine for a cysteine appeared to represent the most likely explanation for the reduced neurovirulence of strain M13.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0168-1702(90)90073-k | DOI Listing |
Commun Chem
January 2025
Agri-Bio Research Center, Kaneka Corporation, Takasago, Hyogo, Japan.
Cyclic lipopeptides (CLPs) produced by the genus Bacillus are amphiphiles composed of hydrophilic amino acid and hydrophobic fatty acid moieties and are biosynthesised by non-ribosomal peptide synthetases (NRPSs). CLPs are produced as a mixture of homologues with different fatty acid moieties, whose length affects CLP activity. Iturin family lipopeptides are a family of CLPs comprising cyclic heptapeptides and β-amino fatty acids and have antimicrobial activity.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Key Laboratory of Crop Molecular Improvement, Rice Research Institute, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.
We identified a CXCXCPXC motif and 11 CLG genes that regulate epidermal development by interacting with homeodomain leucine-zipper IV family proteins in Arabidopsis. Zinc finger proteins (ZFPs), the key regulators of plant growth and development, can be categorized based on the sequence patterns of zinc finger motifs. Here, by aligning the amino acid sequences of CFL1, AtCFL1, AtCFL2, GIRl, and GIR2, we identified the CXCXCPXC motif in their C-terminus, which differs from all the previously characterized canonical zinc finger motifs.
View Article and Find Full Text PDFCommun Biol
January 2025
National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, 350401, Taiwan.
Metabolic and neurological disorders commonly display dysfunctional branched-chain amino acid (BCAA) metabolism, though it is poorly understood how this leads to neurological damage. We investigated this by generating Drosophila mutants lacking BCAA-catabolic activity, resulting in elevated BCAA levels and neurological dysfunction, mimicking disease-relevant symptoms. Our findings reveal a reduction in neuronal AMP-activated protein kinase (AMPK) activity, which disrupts autophagy in mutant brain tissues, linking BCAA imbalance to brain dysfunction.
View Article and Find Full Text PDFCommun Biol
January 2025
Dept. Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
Predicting novel mutations has long-lasting impacts on life science research. Traditionally, this problem is addressed through wet-lab experiments, which are often expensive and time consuming. The recent advancement in neural language models has provided stunning results in modeling and deciphering sequences.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Since the first Chapter dealt with the well-known charge-charge interactions familiar to biologists, this concluding Chapter introduces some key electrical forces, probably much less familiar, perhaps even unknown. LLPS (liquid liquid phase separation) which we have seen involved in so much of cell biology depends on multivalent, π-π and cation-π electrical forces. How these arise is dealt with here and may be especially useful as an aide memoir to return to when such issues arise within the bulk of the text.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!