Origins and impact of constraints in evolution of gene families.

Genome Res

Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA.

Published: December 2006

Recent investigations of high-throughput genomic and phenomic data have uncovered a variety of significant but relatively weak correlations between a gene's functional and evolutionary characteristics. In particular, essential genes and genes with paralogs have a slight propensity to evolve more slowly than nonessential genes and singletons, respectively. However, given the weakness and multiplicity of these associations, their biological relevance remains uncertain. Here, we show that existence of an essential paralog can be used as a specific and strong gauge of selection. We partition gene families in several genomes into two classes: those that include at least one essential gene (E-families) and those without essential genes (N-families). We find that weaker purifying selection causes N-families to evolve in a more dynamic regime with higher rates both of duplicate fixation and pseudogenization. Because genes in E-families are subject to significantly stronger purifying selection than those in N-families, they survive longer and exhibit greater sequence divergence. Longer average survival time also allows for divergence of upstream regulatory regions, resulting in change of transcriptional context among paralogs in E-families. These findings are compatible with differential division of ancestral functions (subfunctionalization) or emergence of novel functions (neofunctionalization) being the prevalent modes of evolution of paralogs in E-families as opposed to pseudogenization (nonfunctionalization), which is the typical fate of paralogs in N-families. Unlike other characteristics of genes, such as essentiality, existence of paralogs, or expression level, membership in an E-family or an N-family strongly correlates with the level of selection and appears to be a major determinant of a gene's evolutionary fate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665636PMC
http://dx.doi.org/10.1101/gr.5346206DOI Listing

Publication Analysis

Top Keywords

gene families
8
essential genes
8
purifying selection
8
selection n-families
8
paralogs e-families
8
genes
6
paralogs
5
origins impact
4
impact constraints
4
constraints evolution
4

Similar Publications

HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects.

Cell Mol Life Sci

January 2025

Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.

View Article and Find Full Text PDF

Evidence for Multiple Independent Expansions of Fox Gene Families Within Flatworms.

J Mol Evol

January 2025

Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.

Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).

View Article and Find Full Text PDF

Objectives: To study the clinical manifestations and genetic characteristics of children with maturity-onset diabetes of the young type 2 (MODY2), aiming to enhance the recognition of MODY2 in clinical practice.

Methods: A retrospective analysis was conducted on the clinical data of 13 children diagnosed with MODY2 at the Department of Pediatrics of Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology from August 2017 to July 2023.

Results: All 13 MODY2 children had a positive family history of diabetes and were found to have mild fasting hyperglycemia [(6.

View Article and Find Full Text PDF

Background: Methyltransferase-like (METTL) family protein plays a crucial role in the progression of malignancies. However, the function of METTL17 across pan-cancers, especially in hepatocellular carcinoma (HCC) is still poorly understood.

Methods: All original data were downloaded from TCGA, GTEx, HPA, UCSC databases and various data portals.

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!