The oncoprotein c-Myc is frequently overexpressed in breast cancer and ectopic expression in breast cancer cell lines attenuates responses to antiestrogen treatment. Here, we review preliminary data aimed at further elucidating a potential role for c-Myc in clinical endocrine resistance in breast cancer. Immunohistochemical and semi-quantitative PCR revealed that c-Myc protein and c-myc mRNA were frequently overexpressed in both ER-positive and ER-negative breast carcinoma. Furthermore, both constitutive and inducible c-Myc overexpression in MCF-7 breast cancer cell lines markedly reduced their sensitivity to the growth inhibitory effects of the pure antiestrogen ICI 182,780. In order to identify potential downstream targets of c-Myc that mediate this effect, Affymetrix microarrays were employed to examine the patterns of gene expression shared by MCF-7 cells stimulated by estrogen, or by induction of c-Myc. Approximately 50% of estrogen target genes identified 6h after treatment were also regulated by c-Myc. One novel target, EMU4, was transcriptionally regulated by c-Myc. In addition, there was a strong correlation between c-myc and EMU4 mRNA expression in a battery of breast cancer cell lines. These data confirm that c-Myc overexpression is a common event in breast cancer, and that this is associated with resistance to antiestrogens in vitro. Furthermore, the development of an experimental paradigm for the discovery of c-Myc and estrogen target genes associated with endocrine resistance provides a framework for the discovery and validation of genes involved in estrogen signalling, and c-Myc-mediated-antiestrogen resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2006.09.028DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
c-myc
13
c-myc overexpression
12
endocrine resistance
12
cancer cell
12
cell lines
12
breast
8
resistance breast
8
frequently overexpressed
8
estrogen target
8

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Early cancer detection substantially improves the rate of patient survival; however, conventional screening methods are directed at single anatomical sites and focus primarily on a limited number of cancers, such as gastric, colorectal, lung, breast, and cervical cancer. Additionally, several cancers are inadequately screened, hindering early detection of 45.5% cases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in the Ki67 biomarker before and after neoadjuvant chemotherapy (NACT) affect survival in patients with triple-negative breast cancer (TNBC).
  • Among 1,777 TNBC patients analyzed, most showed a decrease in tumor size and Ki67 levels after NACT, though many had no change or experienced treatment discontinuation.
  • Patients with unchanged Ki67 had significantly worse overall and disease-specific survival compared to those with decreased Ki67, emphasizing the need for personalized treatment strategies based on ongoing monitoring of this biomarker.
View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!