RNA interference (RNAi) has been extremely effective against hepatitis C viral (HCV) gene expression in short-term cell culture. Our aim was to determine whether long-term RNAi might result in HCV-resistant mutants. Huh7 HCV subgenomic replicon cells were transfected with short interfering RNAs (siRNAs). HCV-RNA was quantified by real-time RT-PCR, and HCV NS5A levels were assayed by Western blots using specific antibody. Treatment with HCV-siRNA resulted in a 50% inhibition of HCV-RNA levels compared with pretreatment levels after 4 weeks (P < 0.05). HCV-RNA returned to 85% of pretreatment levels after cessation of HCV-siRNA treatment. Sequencing of the HCV-siRNA target and upstream region was performed on 10 colonies from subcloning using PCR products, each before, during and after siRNA treatment. All colonies except one from HCV-siRNA-treated cells during and after treatment had mutations. There were no mutations in the HCV-siRNA target region following control HBV-siRNA treatment. Subcloned replicon cells containing the point mutations in the target region were found to be resistant to HCV-siRNA inhibitory effects. In conclusion, even after 4 weeks of treatment of replicon cells with HCV-siRNA, HCV-RNA and HCV-NS5A protein expression could not be completely eliminated. HCV replicons isolated during or after treatment were associated with mutations in the siRNA target region, while controls were not.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2893.2006.00752.xDOI Listing

Publication Analysis

Top Keywords

replicon cells
16
target region
12
pretreatment levels
8
hcv-sirna target
8
treatment
7
hcv
6
hcv-sirna
6
cells
5
mutations
5
sirna-resistance treated
4

Similar Publications

Virus assembly is a crucial step for the completion of the viral replication cycle. In addition to ensuring efficient incorporation of viral genomes into nascent virions, high specificity is required to prevent incorporation of host nucleic acids. For picornaviruses, including FMDV, the mechanisms required to fulfil these requirements are not well understood.

View Article and Find Full Text PDF

Easy-Curing and pH-Regulated CRISPR-Cas9 Plasmids for Gene Editing and Plasmid Curing in Lactococcus cremoris.

Microb Biotechnol

December 2024

Departamento de Química Biológica Ranwel Caputto, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.

In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L.

View Article and Find Full Text PDF

Reverse Genetics System for Crimean-Congo Hemorrhagic Fever Virus.

Methods Mol Biol

December 2024

Viral Special Pathogens Branch, Division of High-Consequence Pathogens & Pathology, Centers for Disease Control & Prevention, Atlanta, GA, USA.

Reverse genetic systems are powerful tools in molecular virology that allow the generation of infectious recombinant virus and the manipulation of viral genomes. Reverse genetic systems enable the incorporation of reporter genes, facilitating many virological assays, including high-throughput screening. Additionally, reverse genetic systems can be used to introduce targeted mutations into the viral genome, allowing investigations of viral genetic elements and protein functions in virus pathogenesis and biology.

View Article and Find Full Text PDF

Advancement of vaccine candidates that demonstrate protective efficacy in screening studies necessitates detailed safety and immunogenicity investigations in pre-clinical models. A non-spreading Crimean-Congo hemorrhagic fever virus (CCHFV) viral replicon particle (VRP) vaccine was developed for single-dose administration to protect against disease. To date, several studies have supported safety, immunogenicity, and efficacy of the CCHF VRP in multiple highly sensitive murine models of lethal disease, but the VRP had yet to be evaluated in large animals.

View Article and Find Full Text PDF

All lineages of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, contain mutations between amino acids 199 and 205 in the nucleocapsid (N) protein that are associated with increased infectivity. The effects of these mutations have been difficult to determine because N protein contributes to both viral replication and viral particle assembly during infection. Here, we used single-cycle infection and virus-like particle assays to show that N protein phosphorylation has opposing effects on viral assembly and genome replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!