A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nicotinamide nucleotide transhydrogenase: a link between insulin secretion, glucose metabolism and oxidative stress. | LitMetric

AI Article Synopsis

  • Recent studies indicate that Nnt (nicotinamide nucleotide transhydrogenase) plays a crucial role in insulin secretion and managing reactive oxygen species (ROS) in pancreatic beta-cells.
  • Deletion of the Nnt gene in C57BL/6J mice leads to glucose intolerance and reduced insulin secretion, but restoring the wild-type Nnt gene can reverse this issue.
  • Nnt mutations are associated with increased ROS production, which disrupts mitochondrial metabolism in beta-cells, resulting in diminished ATP levels, impaired KATP channel activity, and ultimately, reduced insulin secretion.

Article Abstract

This paper reviews recent studies on the role of Nnt (nicotinamide nucleotide transhydrogenase) in insulin secretion and detoxification of ROS (reactive oxygen species). Glucose-stimulated insulin release from pancreatic beta-cells is mediated by increased metabolism. This elevates intracellular [ATP], thereby closing KATP channels (ATP-sensitive potassium channels) and producing membrane depolarization, activation of voltage-gated Ca2+ channels, Ca2+ influx and, consequently, insulin secretion. The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion, which results from a naturally occurring deletion in the Nnt gene. Transgenic expression of the wild-type Nnt gene in C57BL/6J mice rescues the phenotype. Knockdown of Nnt in the insulin-secreting cell line MIN6 with small interfering RNA dramatically reduced Ca2+ influx and insulin secretion. Similarly, mice carrying ENU (N-ethyl-N-nitrosourea)-induced loss-of-function mutations in Nnt were glucose intolerant and secreted less insulin during a glucose tolerance test. Islets isolated from these mice showed impaired insulin secretion in response to glucose, but not to the KATP channel blocker tolbutamide. This is explained by the fact that glucose failed to elevate ATP in Nnt mutant islets. Nnt is a nuclear-encoded mitochondrial protein involved in detoxification of ROS. beta-Cells isolated from Nnt mutant mice showed increased ROS production on glucose stimulation. We hypothesize that Nnt mutations enhance glucose-dependent ROS production and thereby impair beta-cell mitochondrial metabolism, possibly via activation of uncoupling proteins. This reduces ATP production and lowers KATP channel activity. Consequently, glucose-dependent electrical activity and insulin secretion are impaired.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST0340806DOI Listing

Publication Analysis

Top Keywords

insulin secretion
28
insulin
9
nnt
9
nicotinamide nucleotide
8
nucleotide transhydrogenase
8
detoxification ros
8
ca2+ influx
8
nnt gene
8
katp channel
8
nnt mutant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!