A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Collection and storage of CO2 for 13C analysis: An application to separate soil CO2 efflux into root- and soil-derived components. | LitMetric

Soil surface CO2 efflux is comprised of CO2 from (i) root respiration and rhizosphere microbes and (ii) heterotrophic respiration from the breakdown of soil organic matter (SOM). This efflux may be partitioned between these sources using delta13C measurements. To achieve this, continuous flow isotope ratio mass spectrometry can be used and, in conjunction with 10 mL septum-capped vials, large numbers of samples may be analysed using a Finnigan MAT Delta(plus)XP interfaced to a Gas Bench II. Here we describe a number of advances to facilitate such work, including: (i) a technique for monitoring mass spectrometer performance, (ii) improvements to sample storage, and (iii) a gas-handling system for incubating and sampling the CO2 derived from roots and soils. Mass spectrometer performance was monitored using an automated refillable vial. Compressed air analysed with this system had mean delta13C of -9.61 +/- 0.16 per thousand (+/- 1sigma, n = 28) collected over four runs. Heating the butyl rubber septa used to seal the vials at 105 degrees C for 12 h improved the sample storage. After air transportation over 12 days, the isotope composition of the CO2 at ambient concentrations was unchanged (before: -35.2 +/- 0.10 per thousand, n = 4; after: -35.3 +/- 0.10 per thousand, n = 15); without heat treatment of the septa the CO2 became slightly enriched (-35.0 +/- 0.14 per thousand, n = 15). The linearity of the Gas Bench II was found to decline above 8000 micromol CO2 mol(-1). To stay within a linear range and to allow the incubation of soil and root material we describe a gas-handling system based around a peristaltic pump. Finally, we demonstrate these methods by growing a C-4 grass (Guinea grass, Panicum maximum Jacq.) in a C-3 soil. Root respiration was found to contribute between 5 and 22% to the soil surface CO2 efflux. These methodologies will facilitate experiments aimed at measuring the isotopic composition of soil-derived CO2 across a range of ecological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2749DOI Listing

Publication Analysis

Top Keywords

co2 efflux
12
co2
10
soil surface
8
surface co2
8
root respiration
8
gas bench
8
mass spectrometer
8
spectrometer performance
8
sample storage
8
gas-handling system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!