A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An instrument for sorting of magnetic microparticles in a magnetic field gradient. | LitMetric

An instrument for sorting of magnetic microparticles in a magnetic field gradient.

Cytometry A

Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: November 2006

AI Article Synopsis

  • The study developed a magnetophoresis instrument that uses a flow chamber and magnetic fields to sort magnetic microparticles based on their magnetic properties, aiming to enhance biomedical research capabilities.
  • The flow chamber features multiple inlets and outlets to efficiently collect sorted microparticles, allowing researchers to analyze and manipulate particles depending on their size and magnetic moments.
  • Results showed successful sorting of different types of microparticles with adjustments to flow dynamics improving sorting precision and reproducibility, confirming the technique’s potential for quantitative molecular analysis.

Article Abstract

Background: The goal of our bioassay technique is to demonstrate high throughput, highly parallel, and high sensitivity quantitative molecular analysis that will expand current biomedical research capabilities. To this end, we have built and characterized a magnetophoresis instrument using a flow chamber in a magnetic field gradient to sort magnetic microparticles by their magnetic moment for eventual use as biological labels.

Methods: The flow chamber consists of a sample inlet, differential sheath streams, and eight outlets for collecting the microparticles after they have traversed the chamber. Magnetic microparticles are injected into the flow chamber that is positioned in a linear magnetic field gradient. The trajectory for each microparticle is determined by its total magnetic moment and size. The resulting populations of monodispersed magnetic microparticles in the different outlet bins are sorted by their magnetic moment; with the highest magnetic moments being deflected the furthest.

Results: We have characterized the system for sorting both superparamagnetic and ferromagnetic microparticles with approximate diameters of 8 microm and 4.0-4.9 microm, respectively. To characterize the instrument, we used microparticles with a known size distribution and varied the transit time through the chamber. This is equivalent to varying the magnetic moment, while allowing us to hold the particle properties constant from run-to-run. We demonstrated the ability to reproducibly change the distribution of the particles in the collection bins by varying transit time in good agreement with theory. We identified hydrodynamic instabilities responsible for causing dispersion in the flow. Improvements to the flow chamber hydrodynamics such as reducing the aspect ratio between the sample inlet and the chamber depth and stabilizing the sheath flow resulted in narrow sorting distributions. We measured a sorting reproducibility (percentage of particles returning to their original bin upon resorting individual populations) of 84-89%.

Conclusions: We have developed a simple magnetophoresis system for reproducibly sorting magnetic microparticles. This technique will permit the use of microparticles with a wide range of magnetic moments to create a wide range of magnetic labels. Careful consideration of system design and operational parameters enables reliable and reproducible sorting of microparticles with varying size and magnetic content.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20337DOI Listing

Publication Analysis

Top Keywords

magnetic microparticles
20
magnetic
16
flow chamber
16
magnetic moment
16
magnetic field
12
field gradient
12
microparticles
10
sorting magnetic
8
microparticles magnetic
8
chamber magnetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!