Use of herpes simplex virus type 1-based amplicon vector for delivery of small interfering RNA.

Gene Ther

Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy.

Published: March 2007

Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis of mammalian cells. The use of DNA-based plasmid vectors to achieve transient and stable expression of siRNA has been developed to avoid the problems of double-stranded oligonucleotides transfection. These vectors direct the transcription of small hairpin RNAs (shRNAs) from a polymerase-III (H1 or U6)-RNA gene promoter. However, numerous disadvantages remain, including low transfection efficiency and difficulty in transfecting primary cells. To overcome some of these problems, the use of viral vectors for siRNA delivery has been described. Retroviral, adenoviral, adeno-associated and herpes viral shRNAs delivery systems have been successfully used to silence genes, in vitro and in vivo. The use of a herpes simplex virus type 1 (HSV-1)-based amplicon vector for siRNA delivery into mammalian cells, using human polyomavirus BK (BKV)-transformed cells as a model system is described. The results demonstrate the ability of amplicon vectors to inhibit the expression of BKV T-Ag and tumorigenicity of BKV-transformed cells. We show that the use of the amplicon vector is highly efficient for the delivery of siRNA molecules. The unique ability of these vectors to deliver multiple copies of siRNA may provide a useful tool in the development of novel anticancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3302878DOI Listing

Publication Analysis

Top Keywords

amplicon vector
12
herpes simplex
8
simplex virus
8
virus type
8
small interfering
8
mammalian cells
8
sirna delivery
8
bkv-transformed cells
8
delivery
5
cells
5

Similar Publications

Gene drive-based population suppression in the malaria vector Anopheles stephensi.

Nat Commun

January 2025

Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.

Gene drives are alleles that can bias the inheritance of specific traits in target populations for the purpose of modification or suppression. Here, we construct a homing suppression drive in the major urban malaria vector Anopheles stephensi targeting the female-specific exon of doublesex, incorporating two gRNAs and a nanos-Cas9 to reduce functional resistance and improve female heterozygote fitness. Our results show that the drive was recessive sterile in both females and males, with various intersex phenotypes in drive homozygotes.

View Article and Find Full Text PDF

Ticks are the second most important hematophagous ectoparasites after mosquitoes and serve as vectors for various pathogens, transmitting them to wild and domestic animals, as well as humans. Argas persicus are the soft ticks that are known to parasitize domestic poultry. Hard ticks are known to be the reservoir of Toxoplasma (T.

View Article and Find Full Text PDF

Crimean-Congo haemorrhagic fever virus (CCHFV), a Biosafety level 4 pathogen transmitted by ticks, causes severe haemorrhagic diseases in humans but remains clinically silent in animals. Over the past forty years, Nigeria lacks comprehensive genetic data on CCHFV in livestock and ticks. This study aimed to identify and characterize CCHFV strains in cattle and their Hyalomma ticks, the primary vector, in Kwara State, Nigeria.

View Article and Find Full Text PDF

Monitoring molecular markers associated with antimalarial drug resistance in south-east Senegal from 2021 to 2023.

J Antimicrob Chemother

January 2025

Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.

Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.

Objective: To assess the proportion of P.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as the vector of choice for in vivo gene delivery, with numerous clinical trials underway for the treatment of various human diseases. Utilizing rAAV in gene therapy requires a highly precise quantification method to determine the viral genome titer and further establish the optimal therapeutic dosage for a rAAV product. The conventional single-channel droplet digital PCR (1D ddPCR) method offers only partial information regarding the viral vector genome titer, lacking insights into its integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!