When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod.106.056739 | DOI Listing |
J Psychiatr Res
February 2024
Department of Anesthesiology, Pharmacology & Therapeutics, 2176 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada. Electronic address:
Nucleic Acids Res
October 2023
Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, University of Birmingham, UK.
Faithful cell division is the basis for the propagation of life and DNA replication must be precisely regulated. DNA replication stress is a prominent endogenous source of genome instability that not only leads to ageing, but also neuropathology and cancer development in humans. Specifically, the issues of how vertebrate cells select and activate origins of replication are of importance as, for example, insufficient origin firing leads to genomic instability and mutations in replication initiation factors lead to the rare human disease Meier-Gorlin syndrome.
View Article and Find Full Text PDFNat Med
May 2023
British Heart Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
J Allergy Clin Immunol
July 2023
Department of Microbiology, Immunology, and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom. Electronic address:
Background: Severe congenital neutropenia presents with recurrent infections early in life as a result of arrested granulopoiesis. Multiple genetic defects are known to block granulocyte differentiation; however, a genetic cause remains unknown in approximately 40% of cases.
Objective: We aimed to characterize a patient with severe congenital neutropenia and syndromic features without a genetic diagnosis.
Nat Commun
July 2022
Enable Biosciences Inc, South San Francisco, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!