Vertebrate embryos define an anatomic plane of bilateral symmetry by establishing rudimentary anteroposterior and dorsoventral (DV) axes. A left-right (LR) axis also emerges, presaging eventual morphological asymmetries of the heart and other viscera. In the radially symmetric egg of Xenopus laevis, the earliest steps in DV axis determination are driven by microtubule-dependent localization of maternal components toward the prospective dorsal side. LR axis determination is linked in time to this DV-determining process, but the earliest steps are unclear. Significantly, no cytoskeletal polarization has been identified in early embryos capable of lateral displacement of maternal components. Cleaving Xenopus embryos and parthenogenetically activated eggs treated with 2,3-butanedione monoxime (BDM) undergo a dramatic large-scale torsion, with the cortex of the animal hemisphere shearing in an exclusively counterclockwise direction past the vegetal cortex. Long actin fibers develop in a shear zone paralleling the equator. Drug experiments indicate that the actin is not organized by microtubules, and depends on the reorganization of preexisting f-actin fibers rather than new actin polymerization. The invariant chirality of this drug response suggests a maternally inherited, microfilament-dependent organization within the egg cortex that could play an early role in LR axis determination during the first cell cycle. Consistent with this hypothesis, brief disruption of cortical actin during the first cell cycle randomizes the LR orientation of tadpole heart and gut.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.02642DOI Listing

Publication Analysis

Top Keywords

axis determination
12
egg cortex
8
earliest steps
8
maternal components
8
cell cycle
8
intrinsic chiral
4
chiral properties
4
properties xenopus
4
xenopus egg
4
cortex
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!