Although the transport of human immunodeficiency virus type 1 (HIV-1) through the epithelium is critical for HIV-1 colonization, the mechanisms controlling this process remain obscure. In the present study, we investigated the transcellular migration of HIV-1 as a cell-free virus through primary genital epithelial cells (PGECs). The absence of CD4 on PGECs implicates an unusual entry pathway for HIV-1. We found that syndecans are abundantly expressed on PGECs and promote the initial attachment and subsequent entry of HIV-1 through PGECs. Although CXCR4 and CCR5 do not contribute to HIV-1 attachment, they enhance viral entry and transcytosis through PGECs. Importantly, HIV-1 exploits both syndecans and chemokine receptors to ensure successful cell-free transport through the genital epithelium. HIV-1-syndecan interactions rely on specific residues in the V3 of gp120 and specific sulfations within syndecans. We found no obvious correlation between coreceptor usage and the capacity of the virus to transcytose. Since viruses isolated after sexual transmission are mainly R5 viruses, this suggests that the properties conferring virus replication after transmission are distinct from those conferring cell-free virus transcytosis through the genital epithelium. Although we found that cell-free HIV-1 crosses PGECs as infectious particles, the efficiency of transcytosis is extremely poor (less than 0.02% of the initial inoculum). This demonstrates that the genital epithelium serves as a major barrier against HIV-1. Although one cannot exclude the possibility that limited passage of cell-free HIV-1 transcytosis through an intact genital epithelium occurs in vivo, it is likely that the establishment of infection via cell-free HIV-1 transmigration is a rare event.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797244PMC
http://dx.doi.org/10.1128/JVI.01303-06DOI Listing

Publication Analysis

Top Keywords

genital epithelium
16
cell-free hiv-1
12
hiv-1
11
human immunodeficiency
8
immunodeficiency virus
8
virus type
8
primary genital
8
genital epithelial
8
epithelial cells
8
cell-free virus
8

Similar Publications

Differential Activity and Expression of Proteasome in Seminiferous Epithelium During Mouse Spermatogenesis.

Int J Mol Sci

January 2025

Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.

Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.

View Article and Find Full Text PDF

Prospective Validation of an Automated Hybrid Multidimensional MRI Tool for Prostate Cancer Detection Using Targeted Biopsy: Comparison with PI-RADS-based Assessment.

Radiol Imaging Cancer

January 2025

From the Department of Radiology (A.C., A.N.Y., R.E., C.H., G.L., M.M., E.B.J., A.L.C., B.G., G.S.K., A.O.), Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided Therapy (A.C., A.N.Y., M.M., A.L.C., B.G.), Department of Surgery, Section of Urology (G.G., L.F.R., P.K.M., S.E.), Department of Pathology (T.A.), and Department of Public Health Sciences (M.G.), University of Chicago, 5841 S Maryland Ave, MC 2026, Chicago, IL 60637.

Purpose To evaluate the use of an automated hybrid multidimensional MRI (HM-MRI)-based tool to prospectively identify prostate cancer targets before MRI/US fusion biopsy in comparison with Prostate Imaging and Reporting Data System (PI-RADS)-based multiparametric MRI (mpMRI) evaluation by expert radiologists. Materials and Methods In this prospective clinical trial (ClinicalTrials.gov registration no.

View Article and Find Full Text PDF

Problem: A high-fat diet (HFD) predisposes animals to glucose intolerance, dyslipidemia and testicular oxidative stress, and impairs sperm production in rats. Quercetin is a flavonoid with antioxidant, anti-inflammatory, and lipolytic actions and is a potential supplement to combat the oxidative stress caused by HFD and its harmful effects on reproduction. This study evaluated the effects of quercetin supplementation at doses of 10 and 20 mg/day on reproductive parameters and testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose.

View Article and Find Full Text PDF

Single-Cell RNA Sequencing Reveals the Cellular Origin and Evolution of Small-Cell Neuroendocrine Carcinoma of the Cervix.

J Med Virol

January 2025

Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China.

Small-cell neuroendocrine cancer (SCNEC) of the uterine cervix is an exceedingly rare, highly aggressive tumor with an extremely poor prognosis. The cellular heterogeneity, origin, and tumorigenesis trajectories of SCNEC of the cervix remain largely unclear. We performed single-cell RNA sequencing and whole-exome sequencing on tumor tissues and adjacent normal cervical tissues from two patients diagnosed with SCNEC of the cervix.

View Article and Find Full Text PDF

Background: Aerobic vaginitis (AV) is a state of abnormal vaginal microbiota, which is associated with increased numbers of aerobic, enteric bacteria and inflammation of the vaginal epithelium. Anti-microbial treatment combined with anti-inflammatory therapy could be useful in the treatment of this condition. It is known that calcitriol, the active form of vitamin D, plays an important role in modulating the immune response in several inflammatory diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!