Conclusion: Our study outlines an alternative approach for the selection and investigation of genes involved in inner ear function.

Objective: To gain understanding of the gene pathways involved in the development of the normal cochlea.

Materials And Methods: Microarray technology currently offers the most efficient approach to investigate gene expression and identify pathways involved in cell differentiation. Epidermal growth factor (EGF) induces cultures derived from the organ of Corti to proliferate and produce new hair cells. Since pluripotent embryonic stem (ES) cells have the capacity to generate all tissues, we induced murine ES cells to differentiate towards ectodermal and neuroectodermal cell types and from there investigated their commitment towards the hair cell lineage in the presence of EGF. Cells were collected at three points along the differentiation pathway and their expression profiles were determined using the Soares NMIE mouse inner ear cDNA library printed in microarray format.

Results: Three genes up-regulated after addition of EGF (serine (or cysteine) proteinase inhibitor, clade H, member 1 (Serpinh1), solute carrier family 2 (facilitated glucose transporter), member 10 (Slc2a10) and secreted acidic cysteine-rich glycoprotein (Sparc)) were selected for further analysis and characterization. Of the three genes, Serpinh1 and Slc2a10 have never been implicated in the hearing process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016480600702118DOI Listing

Publication Analysis

Top Keywords

inner ear
12
gene expression
8
embryonic stem
8
stem cells
8
hair cell
8
pathways involved
8
three genes
8
cells
5
expression changes
4
changes step-wise
4

Similar Publications

Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.

View Article and Find Full Text PDF

Investigating POU3F4 in cancer: Expression patterns, prognostic implications, and functional roles in tumor immunity.

Heliyon

January 2025

Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, 224002, China.

Research has demonstrated that POU3F4 is integral to various cancers, in addition to its significance in inner ear development, pancreatic differentiation, as well as neural stem cell differentiation. Nevertheless, comprehensive pan-cancer analyses focusing on POU3F4 remain limited. This study aims to assess the prognostic value of POU3F4 in thirty-three cancers and explore its immune-related functions.

View Article and Find Full Text PDF

Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.

View Article and Find Full Text PDF

A OHCs-Targeted Strategy for PEDF Delivery in Noise-Induced Hearing Loss.

Adv Healthc Mater

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, P. R. China.

Noise-induced hearing loss (NIHL) results from prolonged exposure to intense noise, causing damage to sensory outer hair cells (OHCs) and spiral ganglion neurons (SGNs). The blood labyrinth barrier (BLB) hinders systemic drug delivery to the inner ear. This study applied a retro-auricular round window membrane (RWM) method to bypass the BLB, enabling the transport of macromolecular proteins into the inner ear.

View Article and Find Full Text PDF

Human activities have significantly altered coastal ecosystems worldwide. The phenomenon of shifting baselines syndrome (SBS) complicates our understanding of these changes, masking the true scale of human impacts. This study investigates the long-term ecological effects of anthropogenic activities on New Zealand's coastal ecosystems over 800 years using fish otolith microchemical profiling and dynamic time warping across an entire stock unit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!