The neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative disorders. Nevertheless, small model organisms, including those lacking a nervous system, have proven invaluable in the study of mechanisms that underlie the disease and in studying the functions of the conserved proteins associated to each disease. From the single-celled yeast, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to the worm, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster, biochemical and, in particular, genetic studies on these organisms have provided insight into the NCLs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2006.08.010DOI Listing

Publication Analysis

Top Keywords

characterizing pathogenic
4
pathogenic processes
4
processes batten
4
batten disease
4
disease small
4
small eukaryotic
4
eukaryotic model
4
model systems
4
systems neuronal
4
neuronal ceroid
4

Similar Publications

Avian haemosporidian parasites affecting non-descript village chickens in Africa.

Trop Anim Health Prod

January 2025

Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa.

Smallholder farmers in most of the rural areas in African countries rear non-descript village chickens for petty cash, food provision and for performing rituals. Village chicken production systems are regarded as low input- low output because the chickens receive minimum care and produce average to less eggs and meat. The chickens receive minimal biosecurity and are often left to scavenge for feed and thus exposes them to potential vector parasites that can transmit parasites such as haemoparasites.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

Objective: Pathogenic variants in B-cell receptor-associated protein (BCAP31) are associated with X-linked, deafness, dystonia and cerebral hypomyelination (DDCH) syndrome. DDCH is congenital and non-progressive, featuring severe intellectual disability (ID), variable dysmorphism, and sometimes associated with shortened survival. BCAP31 encodes one of the most abundant chaperones, with several functions including acting as a negative regulator of endoplasmic reticulum (ER) calcium ion (Ca) concentration.

View Article and Find Full Text PDF

Cholesterol ester storage disease (CESD) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the LIPA gene, leading to reduced lysosomal acid lipase activity, cholesterol ester accumulation, and systemic manifestations including liver dysfunction and dyslipidemia. We report the case of a 25-year-old male presenting with subacute jaundice, hyperbilirubinemia (total bilirubin 51 mg/dL, predominantly direct), and dyslipidemia characterized by elevated total cholesterol and low HDL cholesterol levels. Initial diagnostic workup for acute hepatitis and liver dysfunction, including serological and imaging studies, was unremarkable.

View Article and Find Full Text PDF

Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!