A wavelet-based method for local phase extraction from a multi-frequency oscillatory signal.

J Neurosci Methods

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, UMR 5672, 46 allée d'Italie, 69364 Lyon Cedex 07, France.

Published: February 2007

One of the challenges in analyzing neuronal activity is to correlate discrete signal, such as action potentials with a signal having a continuous waveform such as oscillating local field potentials (LFPs). Studies in several systems have shown that some aspects of information coding involve characteristics that intertwine both signals. An action potential is a fast transitory phenomenon that occurs at high frequencies whereas a LFP is a low frequency phenomenon. The study of correlations between these signals requires a good estimation of both instantaneous phase and instantaneous frequency. To extract the instantaneous phase, common techniques rely on the Hilbert transform performed on a filtered signal, which discards temporal information. Therefore, time-frequency methods are best fitted for non-stationary signals, since they preserve both time and frequency information. We propose a new algorithmic procedure that uses wavelet transform and ridge extraction for signals that contain one or more oscillatory frequencies and whose oscillatory frequencies may shift as a function of time. This procedure provides estimates of phase, frequency and temporal features. It can be automated, produces manageable amounts of data and allows human supervision. Because of such advantages, this method is particularly suitable for analyzing synchronization between LFPs and unitary events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2006.09.001DOI Listing

Publication Analysis

Top Keywords

instantaneous phase
8
oscillatory frequencies
8
wavelet-based method
4
method local
4
phase
4
local phase
4
phase extraction
4
extraction multi-frequency
4
multi-frequency oscillatory
4
signal
4

Similar Publications

Microwave phase detectors (MPDs) are key components of instantaneous frequency measurement (IFM) receivers and phase interferometer direction finding (PIF-DF) receivers. In conventional analyses, there is seldom a major quantitative discussion of MPD characterization when multiple signals arrive at the same time, which is often the case in complex and noisy electromagnetic environments. We have reanalyzed the characteristics of MPDs with respect to filter effects acting on more than two RF signals and differential amplifiers, which are not considered in conventional analyses.

View Article and Find Full Text PDF

In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification methods. In the homogeneous temperature field, the solidification of iron is characterized by instantaneous nucleation.

View Article and Find Full Text PDF

Introduction: The effectiveness of AZD7442 (tixagevimab/cilgavimab) against COVID-19 hospitalizations was determined at 3 and 6 months among immunocompromised individuals in Israel during different variant circulations.

Methods: This was a retrospective cohort study using data from Clalit Health Services in Israel. Immunocompromised individuals eligible to receive AZD7442 300 mg between 15 February and 11 December 2022 were identified.

View Article and Find Full Text PDF

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!