The conversion of linoleic acid 9-hydroperoxide (9-HPOD) by recombinant melon (Cucumis melo L.) hydroperoxide lyase (HPL, CYP74C subfamily) was studied. Short (5 s-1 min) incubations at 0 degrees C followed by rapid extraction and trimethylsilylation made it possible to trap a new unstable (t(1/2) <30 s) product, i.e. the hemiacetal (1'E,3'Z)-9-hydroxy-9-(1',3'-nonadienyloxy)-nonanoic acid. Identification was performed by GC-MS analysis and substantiated by the formation of trimethylsilyl 9-trimethylsilyloxy-9-nonyloxy-nonanoate upon catalytic hydrogenation and by (2)H-labelling experiments. Both (18)O atoms of [(18)O(2)-hydroperoxy]9-HPOD were incorporated into the hemiacetal. Along with the hemiacetal, three chain-cleavage products, i.e. the enol (1E,3Z)-nonadienol and the hydrates of 3(Z)-nonenal and 9-oxononanoic acid, were trapped as their trimethylsilyl derivatives. The kinetics of (18)O incorporation from [(18)O(2)]9-HPOD provided strong evidence that the cleavage products originated in the hemiacetal. Linolenic and linoleic acid 13-hydroperoxides served as substrates for recombinant HPLs of melon, alfalfa (Medicago sativa) and guava (Psidium guajava), and in each case hemiacetals and enols were detectable by the trapping technique. The data obtained demonstrated that CYP74C and CYP74B HPLs act as isomerases performing a homolytic rearrangement of fatty acid hydroperoxides into short-lived hemiacetals which upon decomposition produce 3(Z)-nonenal, 3(Z)-hexenal and other short chain aldehydes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbalip.2006.09.002 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA.
Both hydrogen sulfide and endocannabinoids can protect the neural retina from toxic insults under in vitro and in vivo conditions. The aim of the present study was two-fold: (a) to examine the neuroprotective action of cannabinoids [methanandamide and 2-arachidonyl glycerol (2-AG)] against hydrogen peroxide (HO)-induced oxidative damage in the isolated bovine retina and (b) to evaluate the role of endogenously biosynthesized hydrogen sulfide (HS) in the inhibitory actions of cannabinoids on the oxidative stress in the bovine retina. Isolated neural retinas from cows were exposed to oxidative damage using HO (100 µM) for 10 min.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.
Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.
Dokl Biochem Biophys
January 2025
Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences,", 420111, Kazan, Russia.
Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Horticulture, Agriculture Faculty of Aburaihan, University of Tehran, P.O. Box 11365/4117, Tehran, Iran.
This research was conducted to determine the relationship between plant defense responses and the extent of treatment applied to either the aerial parts or roots of the plant. The experimental treatments included different methods of application (spraying versus soil drenching), varying treatment areas (one-sixth, one-third, half, or all of the plant's aerial parts and roots) with SA, and infecting the plants with root-knot nematodes. Evaluation of plant growth and nematode pathogenicity indices in the greenhouse section, HO accumulation rate, and phenylalanine ammonia lyase enzyme activity (in aerial parts and roots) were carried out in biochemical experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!