By using in silico methods in a previous study, we identified 100 oocyte-specific genes and 150 genes, enriched in the mouse oocyte. Interestingly, approximately half of the oocyte-specific genes tend to cluster on mouse chromosomes as if they have recently duplicated during evolution. In this study, we focused our attention on mouse BRDT, which belongs to a family of four structurally related proteins characterized by two N-terminal bromodomains and one C-terminal extraterminal domain (ET domain), defining the BET family. In mammals, BRD2, -3, and -4 are ubiquitously expressed, whereas BRDT expression was shown to be restricted to the testis. We were interested to know whether there was a correlation between the evolutionary rate and the specificity of expression of these four paralogous genes. First, we show by RT-PCR and in situ hybridization that BRDT is also expressed in mouse oocyte. Moreover, phylogenetic analyses show that the BRDT germ cell-specific orthology group clearly evolves faster than its ubiquitously expressed paralogs BRD2, BRD3, and BRD4. This suggests that there is a relationship between the evolution of these four groups of orthology and their tissue specificity of expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2006.09.002DOI Listing

Publication Analysis

Top Keywords

mouse oocyte
12
ubiquitously expressed
12
expressed mouse
8
evolves faster
8
faster ubiquitously
8
expressed paralogs
8
paralogs brd2
8
oocyte-specific genes
8
specificity expression
8
expressed
5

Similar Publications

In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.

View Article and Find Full Text PDF

Investigations on the effects of in vitro exposure of mouse ovaries to withaferin A, a new candidate for chemotherapy.

Reprod Toxicol

January 2025

Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocyte and Ovarian Preantral Follicles (LAMOFOPA), State University of Ceará, Av. Dr. Silas Munguba, 1700, CEP: 60714-903, Fortaleza, CE, Brazil. Electronic address:

This study aimed to investigate, in vitro, the toxicity of WTA on ovarian follicles. Initially, a cytotoxicity assay was conducted using tumor and non-tumor cell lines to determine the ICof the WTA and validate its antitumor activity. Mouse ovaries were cultured in vitro (IVC) for 6 days in the presence of 1% dimethyl sulfoxide (DMSO), doxorubicin at 0.

View Article and Find Full Text PDF

The evolution of ovarian somatic cells characterized by transcriptome and chromatin accessibility across rodents, monkeys, and humans.

Life Med

October 2024

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China.

The ovary plays a crucial role in the reproductive system of female mammals by producing mature oocytes through folliculogenesis. Non-human model organisms are extensively utilized in research on human ovarian biology, thus necessitating the investigation of conservation and divergence in molecular mechanisms across species. In this study, we employed integrative single-cell analysis of transcriptome and chromatin accessibility to identify the evolutionary conservation and divergence patterns of ovaries among humans, monkeys, mice, rats, and rabbits.

View Article and Find Full Text PDF

Ovarian aging is mainly characterized by a progressive decline in oocyte quantity and quality, which ultimately leads to female infertility. Various therapies have been established to cope with ovarian aging, among which exosome-based therapy is considered a promising strategy that can benefit ovarian functions via multiple pathways. Here, we isolated and characterized exosomes derived from ovarian follicular fluid and profiled the differential expression patterns of noncoding exosomal RNAs in young and aged women.

View Article and Find Full Text PDF

Melatonin protects aged oocytes from depalmitoylation-mediated quality reduction by promoting PPT1 degradation and antioxidation.

Redox Biol

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:

Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!