Nanospheres of a bisphosphonate attenuate intimal hyperplasia.

J Nanosci Nanotechnol

Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.

Published: December 2006

AI Article Synopsis

  • The study investigated a new method to reduce restenosis (narrowing of arteries) after injury using bisphosphonate (ISA) loaded in nanoparticles to specifically target and deplete macrophages.
  • The bisphosphonate nanoparticles demonstrated significant cytotoxic effects on macrophage-like cells without affecting smooth muscle cells and resulted in a notable decrease in neointima formation and stenosis when administered in rat models.
  • However, while the treatment was effective in the short term (14 days post-injury), its benefits diminished by day 30, indicating the need for further research on these nanoparticles for long-term artery health and potential applications in other diseases.

Article Abstract

The present study explored a novel strategy for attenuation of restenosis after arterial injury by a bisphosphonate encapsulated in polymeric nanoparticles (NP) for transient selective depletion of macrophages. A bisphosphonate (BP), 2-(2-Aminopyrimidino) ethyldiene-1,1-bisphosphonic acid betaine (ISA), was successfully formulated in 400 nm sized polylactide/glycolide-based NP with high yield (69%) and entrapment efficiency (60% w/w). ISA NP, but not blank NP or free ISA, exhibited specific and significant cytotoxic effect on macrophages-like RAW 264 cells, in a dose-dependent manner, with no inhibitory effect on the growth of smooth muscle cells (SMCs). Fluorescent pyrene-labeled NP were shown to be taken up by RAW 264 cells, but not by SMCs. Intravenously (i.v.) administered ISA NP (15 mg/kg, single dose on day-1) resulted in a significant attenuation of neointima to media area ratio (N/M) by 40% and stenosis by 45% 14 days after rat carotid injury, in comparison to animals treated with free ISA, buffer or blank NP. However, the effect was not preserved 30 days post injury, and an insignificant reduction of neointimal formation was observed. Neointimal hyperplasia was also significantly suppressed after subcutaneous (SC) injection of ISA NP (15 mg/kg, single dose on day-1), reducing both N/M and stenosis. Intraperitoneal (i.p.) injection of silica, a known selective toxin for macrophages, (1000 mg/kg), also resulted in a significant inhibition of N/M and stenosis, which further reinforces the cause-effect relationship of macrophage-inactivation and the prevention of neointima formation. Biocompatible and biodegradable NP loaded with ISA characterized by high colloidal stability, reproducible activity, and high drug entrapment warrant further consideration for restenosis therapy, and may be useful in other disease processes involving monocytes/macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2006.428DOI Listing

Publication Analysis

Top Keywords

free isa
8
raw 264
8
264 cells
8
cells smcs
8
isa mg/kg
8
mg/kg single
8
single dose
8
dose day-1
8
n/m stenosis
8
isa
7

Similar Publications

This paper introduces a fully distributed model-free adaptive control (MFAC) approach for consensus tracking in multi-agent systems (MASs) with compact form data linearization (CFDL). Unlike prior methods that require agents to know the full communication graph, our approach allows each agent to configure its controller using only local information from its neighbors, achieving a fully distributed control. Therefore, our method easily supports scenarios where agents dynamically join or leave MAS.

View Article and Find Full Text PDF

Improved approximation-free control for the leader-follower tracking of the multi-agent systems with disturbance and unknown nonlinearity.

ISA Trans

January 2025

College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, Hunan, China. Electronic address:

Approximation-free control effectively addresses uncertainty and disturbances without relying on approximation techniques such as fuzzy logic systems (FLS) and neural networks (NNs). However, singularity problems-where signals exceed preset boundaries under dynamic operating conditions-remain a challenge. This paper proposes an improved approximation-free control (I-AFC) method for the multi-agent system, which introduces a novel singularity compensator, providing a low-complexity design with exceptional adaptability while reducing the risk of singularity issues under changing working conditions (random initial values, system parameter variations, and changes in topology graph and followers' dynamics).

View Article and Find Full Text PDF

The 2025 Motile Active Matter Roadmap.

J Phys Condens Matter

January 2025

Biozentrum, University of Basel, Spitalstrasse 41, Basel, Basel-Stadt, 4056, SWITZERLAND.

Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials.

View Article and Find Full Text PDF

This paper investigates the self-triggered control for stabilizing an n-dimensional linear time-invariant system under communication constraints, including finite bit rates and transmission delay. The concerned system is further perturbed by bounded process noise. To resolve these issues, a self-triggering strategy is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!