Long-lasting depression of central synaptic transmission following prolonged high-frequency stimulation of cutaneous afferents: a mechanism for post-vibratory hypaesthesia.

Electroencephalogr Clin Neurophysiol

Department of Clinical Neurophysiology, Prince Henry Hospital, and School of Medicine, University of New South Wales, Sydney, Australia.

Published: February 1991

High-frequency vibration or electrical stimulation of cutaneous afferents may produce long-lasting hypaesthesia. Such stimulation alters the excitability of axons in the peripheral nerve but there is evidence that this does not completely explain the hypaesthesia. The present study was undertaken to determine whether a prolonged afferent barrage results in depression of synaptic transmission at a central site. Changes in central excitability to cutaneous inputs were examined in normal subjects by measuring the cerebral evoked potential at different stages after high-frequency conditioning stimulation of the digital nerves. Changes in peripheral excitability were eliminated by adjusting the stimulus intensity so that a constant afferent volley entered the central nervous system. Following the conditioning stimulation (4-5 T, 200 Hz, 10 min), the cortical potential evoked by constant submaximal test volleys was depressed by up to 50% for 25 min. The attenuation was less profound (10-20%) but more prolonged (greater than 45 min) when maximal test volleys were used, and occurred regardless of whether the high-frequency stimulation was applied to the test digit or to adjacent digits. It is concluded that prolonged activation of cutaneous afferents causes a depression in central excitability independent of and additional to peripheral changes, and it is suggested that this mechanism contributes to the associated perceptual disturbances. By analogy it is suggested that the hypaesthesia associated with prolonged vibration may be of central rather than peripheral origin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0013-4694(91)90115-kDOI Listing

Publication Analysis

Top Keywords

cutaneous afferents
12
depression central
8
synaptic transmission
8
high-frequency stimulation
8
stimulation cutaneous
8
central excitability
8
conditioning stimulation
8
test volleys
8
central
6
stimulation
6

Similar Publications

An optogenetic mouse model of hindlimb spasticity after spinal cord injury.

Exp Neurol

January 2025

Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.

View Article and Find Full Text PDF

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Alcohol Use Disorder (AUD) is a chronic brain disorder associated with a high risk of relapse and a limited treatment efficacy. Relapses may occur even after long periods of abstinence and are often triggered by stress or cue induced alcohol craving. C-tactile afferents (CT) are cutaneous nerve fibers postulated to encode pleasant affective touch and known to modulate physiological stress responses.

View Article and Find Full Text PDF

Activation of mouse skin mast cells and cutaneous afferent C-fiber subtypes by bee venom.

Neurosci Lett

January 2025

Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir, Baltimore, MD 21224, USA. Electronic address:

In mammals, many Hymenopteran stings are characterized by pain, redness, and swelling - three manifestations consistent with nociceptive nerve fiber activation. The effect of a Western honeybee (Apis mellifera) venom on the activation of sensory C-fibers in mouse skin was studied using an innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Our data show that honeybee venom stimulated mouse cutaneous nociceptive-like C-fibers, with an intensity (action potential discharge frequency) similar to that seen with a maximally-effective concentration of capsaicin.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic Basis of Migraine
  • : Migraine is largely polygenic, with many genetic variants identified through genome-wide association studies. Key mutations are linked to the TRPM8 channel, which senses cold but may have different activation mechanisms related to migraine.
  • Role of Artemin and GFRα3
  • : The study explores how the neurotrophic factor artemin and its receptor GFRα3 influence migraine-related pain through their effects on TRPM8, potentially affecting cold sensitivity and pain responses in migraine models.
  • Preclinical Findings
  • : Experiments on mice show that GFRα3 is crucial for mechanical sensitivity in migraine, as blocking artemin reduces migraine-like symptoms, highlighting its significance in
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!