Recent genomic sequence annotation suggests that the long arm of human chromosome 21 encodes more than 400 genes. Because there is no evidence to exclude any significant segment of 21 q from containing genes relevant to the Down syndrome (DS) cognitive phenotype, all genes in this entire set must be considered as candidates. Only a subset, however, is likely to make critical contributions. Determining which these are is both a major focus in biology and a critical step in efficient development of therapeutics. The subtle molecular abnormality in DS, the 50% increase in chromosome 21 gene expression, presents significant challenges for researchers in detection and quantitation. Another challenge is the current limitation in understanding gene functions and in interpreting biological characteristics. Here, we review information on chromosome 21-encoded proteins compiled from the literature and from genomics and proteomics databases. For each protein, we summarize their evolutionary conservation, the complexity of their known protein interactions and their level of expression in brain, and discuss the implications and limitations of these data. For a subset, we discuss neurologically relevant phenotypes of mouse models that include knockouts, mutations, or overexpression. Lastly, we highlight a small number of genes for which recent evidence suggests a function in biochemical/cellular pathways that are relevant to cognition. Until knowledge deficits are overcome, we suggest that effective development of gene-phenotype correlations in DS requires a serious and continuous effort to assimilate broad categories of information on chromosome 21 genes, plus the creation of more versatile mouse models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299406 | PMC |
http://dx.doi.org/10.1002/ajmg.c.30098 | DOI Listing |
Sci Rep
January 2025
Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).
View Article and Find Full Text PDFKidney Int
January 2025
Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, UK.
Sex differences exist in acute kidney injury (AKI), and the role that sex and gender play along the AKI care continuum remains unclear. The 33 Acute Disease Quality Initiative meeting evaluated available data on the role of sex and gender in AKI and identified knowledge gaps. Data from experimental models, pathophysiology, epidemiology, clinical care, gender, social determinants of health, education, and advocacy were reviewed.
View Article and Find Full Text PDFForensic Sci Int Genet
January 2025
Department of Genetics, Genomics & Cancer Sciences, University of Leicester, University Road, Leicester, UK. Electronic address:
Kinship determination is a valuable tool in forensic genetics, with applications including familial searching, disaster victim identification, and investigative genetic genealogy. Conventional typing of small numbers of autosomal short tandem repeats (STRs) confidently identifies only first-degree relatives. Massively parallel sequencing (MPS) can access more STRs and resolve alleles identical by length but differing in sequence (isoalleles), which may increase the power of kinship estimation, particularly when combined with additional sequenced single nucleotide polymorphism (SNP) loci, as in the ForenSeq DNA Signature Prep kit.
View Article and Find Full Text PDFPlacenta
January 2025
Mother Infant Research Institute, Tufts Medicine, Boston, MA, USA; Dept Obstetrics & Gynecology, Tufts University, Boston, MA, USA. Electronic address:
Hypothesis: Declines in insulin sensitivity during pregnancy important for fetal growth are associated with impairments in skeletal muscle post-receptor insulin signaling. The primary initiator of these changes is unknown but believed to originate in the placenta. We hypothesize that placental miRNAs are associated with maternal sensitivity changes and impact insulin-sensitive mechanisms in target tissues in vitro.
View Article and Find Full Text PDFScience
January 2025
Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK.
The mammalian Y chromosome is essential for male fertility, but which Y genes regulate spermatogenesis is unresolved. We addressed this by generating 13 Y-deletant mouse models. In , , and deletants, spermatogenesis was impaired.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!