AI Article Synopsis

  • Somites are essential for vertebrate development, forming structures like vertebrae and muscles, with Xenopus laevis (a frog species) serving as a model for studying this process.
  • The study utilized a green fluorescent protein to track cell shape changes during somitogenesis, revealing that specific cell behaviors, such as elongation and bending, are crucial for proper alignment with the notochord.
  • The research also found that the timing of somite rotation differs along the body axis, with anterior somites rotating slower than posterior ones, and emphasizes a dorsal-to-ventral progression in cell alignment within each somite.

Article Abstract

During vertebrate development the formation of somites is a critical step, as these structures will give rise to the vertebrae, muscle, and dermis. In Xenopus laevis, somitogenesis consists of the partitioning of the presomitic mesoderm into somites, which undergo a 90-degree rotation to become aligned parallel to the notochord. Using a membrane-targeted green fluorescent protein to visualize cell outlines, we examined the individual cell shape changes occurring during somitogenesis. We show that this process is the result of specific, coordinated cell behaviors beginning with the mediolateral elongation of cells in the anterior presomitic mesoderm and then the subsequent bending of these elongated cells to become oriented parallel with the notochord. By labeling a clonal population of paraxial mesoderm cells, we show that cells bend around their dorsoventral axis. Moreover, this cell bending correlates with an increase in the number of filopodial protrusions, which appear to be posteriorly directed toward the newly formed segmental boundary. By examining the formation of somites at various positions along the anteroposterior axis, we show that the general sequence of cell behaviors is the same; however, somite rotation in anterior somites is slower than in posterior somites. Lastly, this coordinated set of cell behaviors occurs in a dorsal-to-ventral progression within each somite such that cells in the dorsal aspect of the somite become aligned along the anteroposterior axis before cells in other regions of the same somite. Together, our data further define how these cell behaviors are temporally and spatially coordinated during somite segmentation and rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20979DOI Listing

Publication Analysis

Top Keywords

cell behaviors
20
cell
8
somite segmentation
8
segmentation rotation
8
xenopus laevis
8
formation somites
8
presomitic mesoderm
8
parallel notochord
8
anteroposterior axis
8
somite
6

Similar Publications

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis.

View Article and Find Full Text PDF

Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.

View Article and Find Full Text PDF

We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.

View Article and Find Full Text PDF

Some animals can regenerate large missing regions of their nervous system, requiring mechanisms to restore the pattern, numbers, and wiring of diverse neuron classes. Because injuries are unpredictable, regeneration must be accomplished from an unlimited number of starting points. Coordinated regeneration of neuron-glia architecture is thus a major challenge and remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!