The importance of facilitative processes due to the presence of nitrogen-fixing legumes in temperate grasslands is a contentious issue in biodiversity experiments. Despite a multitude of studies of fertilization effects of legumes on associated nonfixers in agricultural systems, we know little about the dynamics in more diverse systems. We hypothesised that the identity of target plant species (phytometers) and the diversity of neighbouring plant species would affect the magnitude of such positive species interactions. We therefore sampled aboveground tissues of phytometers planted into all plots of a grassland biodiversity-ecosystem functioning experiment and analysed their N concentrations, delta15N values and biomasses. The four phytometer species (Festuca pratensis, Plantago lanceolata, Knautia arvensis and Trifolium pratensis) each belonged to one of the four plant functional groups used in the experiment and allowed the effects of diversity on N dynamics in individual species to be assessed. We found significantly lower delta15N values and higher N concentrations and N contents (amount of N per plant) in phytometer species growing with legumes, indicating a facilitative role for legumes in these grassland ecosystems. Our data suggest that the main driving force behind these facilitative interactions in plots containing legumes was reduced competition for soil nitrate ("nitrate sparing"), with apparent N transfer playing a secondary role. Interestingly, species richness (and to a lesser extent functional group number) significantly decreased delta15N values, N concentrations and N content irrespective of any legume effect. Possible mechanisms behind this effect, such as increased N mineralisation and nitrate uptake in more diverse plots, now need further investigation. The magnitude of the positive interactions depended on the identity of the phytometer species. Evidence for increased N uptake in communities containing legumes was found in all three nonlegume phytometer species, with a subsequent strong increase in biomass in the grass F. pratensis across all diversity levels, and a lesser biomass gain in P. lanceolata and K. arvensis. In contrast, the legume phytometer species T. pratense was negatively affected when other legumes were present in their host communities across all diversity levels.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-006-0576-zDOI Listing

Publication Analysis

Top Keywords

phytometer species
20
delta15n values
12
species
11
positive interactions
8
legumes
8
nitrogen-fixing legumes
8
plant species
8
magnitude positive
8
diversity levels
8
phytometer
5

Similar Publications

Animal-mediated pollination determines the reproductive success of most flowering plants; this process however can be disrupted by environmental degradation, with habitat loss and fragmentation highlighted as a top driver of pollination deficits. Despite being a pervasive stressor worldwide, we still have rather limited empirical evidence on its effects on pollination services, especially for early spring pollination syndromes. We investigate this using a potted plant phytometry experiment in which we placed English Bluebell (Hyacinthoides non-scripta)-a species largely pollinated in spring-into a fragmented woodland habitat.

View Article and Find Full Text PDF

Pollinators and natural enemies are essential ecosystem service providers influenced by land-use and by interactions between them. However, the understanding of the combined impacts of these factors on pollinator and natural enemy activities and their ultimate effects on plant productivity remains limited. We investigated the effects of local and landscape vegetation characteristics and the presence of herbivorous pests on pollination and biological control services and their combined influence on phytometer seed set.

View Article and Find Full Text PDF

Facilitation has been a long-neglected type of interaction but received more attention recently. Legumes are commonly involved in facilitative interactions due to their nitrogen fixation. Facilitative interactions are so far underappreciated yet potentially important for biological invasions, especially given increasing numbers of alien species.

View Article and Find Full Text PDF

As the extent of oil palm (Elaeis guineensis) cultivation has expanded at the expense of tropical rainforests, enriching conventional large-scale oil palm plantations with native trees has been proposed as a strategy for restoring biodiversity and ecosystem function. However, how tree enrichment affects insect-mediated ecosystem functions is unknown. We investigated impacts on insect herbivory and pollination in the fourth year of a plantation-scale, long-term oil palm biodiversity enrichment experiment in Jambi, Sumatra, Indonesia.

View Article and Find Full Text PDF

The abandonment of historical land-use forms within forests, such as grazing or coppicing, and atmospheric nitrogen deposition, has led to an increasing overgrowth of forest gaps and canopy closure in forest ecosystems of Central Europe. From 1945 to 2015, 81% of the forest gaps greater than 150 m within the study area transitioned into a closed forest.This study investigated how the overgrowth process affects flower supply, flower visitors, and reproduction of species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!