Re(CO)3L compounds, where L is a methane-derivatized tripodal ligand, can be prepared under aqueous conditions, and one of which displays significant stability under physiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b608683g | DOI Listing |
J Phys Chem B
January 2025
Institute for Polymer Research, Waterloo Institute for Nanotechnology, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
The conformation of a series of zero-generation polyamidoamine dendrimers end-labeled with four 1-pyrene-butyroyl, -hexanoyl, -octanoyl, -decanoyl, and -dodecanoyl derivatives, referred to as the PyCX-PAMAM-G0 samples with = 4, 6, 8, 10, and 12, respectively, was characterized in ,-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and aqueous solutions of 50 mM sodium dodecyl sulfate (SDS) or 50 mM dodecyltrimethylammonium bromide (DTAB). The conformation of the PyCX-PAMAM-G0 samples was determined from the global model-free analysis (MFA) of the fluorescence decays, which yielded the average rate constant (⟨⟩) for pyrene excimer formation (PEF) between an excited and a ground-state pyrenyl labels, with ⟨⟩ being proportional to the local concentration ([Py]) of the pyrenyl labels within the macromolecular volume; ⟨⟩-vs-[Py] plots yielded straight lines passing through the origin in DMF and DMSO, demonstrating that the internal segments of the dendrimers obeyed Gaussian statistics in these two solvents. In aqueous surfactant solutions, the hydrophobic pyrenyl labels induced the interactions of the PyCX-PAMAM-G0 dendrimers with the SDS and DTAB micelles.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China.
The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
Excessive and uncontrolled application of agrochemicals has resulted in contamination of terrestrial and aquatic environments. In the past decade, metal-organic frameworks (MOFs) have been studied as agrochemical release systems to enhance efficiency while reducing the leaching of toxic molecules to the environment. In this work, we take a further step and use organic agrochemicals as linkers in the preparation of MOFs, which we have called AgroMOFs.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea.
Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.
Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.
Pharmaceutics
December 2024
Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
One of the major challenges in dermal drug delivery is the adequate penetration of the active compound into the skin without causing any skin irritation and inflammation. Nanocrystals (NCs) are nanoscale particles, and their sizes are below 1000 nm. NCs are made up of drug particles only, which are used to improve the aqueous solubility and bioavailability of poorly water-soluble drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!