A method is described for the determination of mercury in human blood serum and packed blood cells employing neutron activation analysis. Great attention was devoted to the collection and manipulation of the samples. The accuracy and precision of the method were tested by analyzing biological reference materials and by comparing the concentrations measured in a number of serum samples to those obtained by another, independent technique (cold vapor atomic absorption spectrometry) in the same samples. The article reports the levels measured in blood serum and packed blood cells samples from 15 adult volunteers, as well as the figures determined in a "second-generation" biological reference material (freeze-dried human serum), prepared and conditioned at the University of Ghent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02992724 | DOI Listing |
Asian J Transfus Sci
September 2022
Department of Blood Bank, Regency Hospital Limited, Kanpur, Uttar Pradesh, India.
Karl Landsteiner discovered ABO blood group system in the early 20 century, but still, uncertainty remains in immunohematology while detection of ABO subgroups or weaker variants. The presence of weak subgroups in patient samples gives rise to the discrepancy in forward (cell) and reverse (serum) grouping. We here report a case of the B(A) phenotype in a patient who was diagnosed with chronic liver disease with acute pancreatitis, requiring packed red blood cells due to anemia.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory of Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Highly ordered ultrathin nanosheets (NSs) of Au(I)-Cys were fabricated through aggregation-induced supramolecular self-assembly triggered by an extended agitation in an alkaline environment. The synthesized Au(I)-Cys NSs exhibited intense luminescence and exceptional chirality. Remarkably, additions of biothiols to Au(I)-Cys NSs have significantly enhanced their luminescence emission, and circular dichroism properties coupled with morphological modulations into nanoflowers, nanodendrites, or closely packed aggregates.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
Microalgae have well-established health benefits for farmed fish. Thus, this study aims to explore the potential protective effects of , is, and against pyrogallol-induced hematological, hepatic, and renal biomarkers in African catfish (), as well as the histopathological changes in the liver and kidney. Fish weighing 200 ± 25 g were divided into several groups: group 1 served as the control, group 2 was exposed to 10 mg/L of pyrogallol, and groups 3, 4, and 5 were exposed to the same concentration of pyrogallol, supplemented with at 20 g/kg diet, is at 50 g/kg diet, and at 5 g/kg diet, respectively, for 15 days.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Herein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!