Exposure to repeated, intermittent, escalating doses of amphetamine in rats disrupts information processing in several tasks. Some of these deficits, notably impaired attentional set shifting, may reflect altered prefrontal cortex function. This study examined the effects of repeated treatment with amphetamine on performance in the 5-choice serial reaction time test. This test measures sustained visual attention, a behavior that is known to require the prefrontal cortex. Rats were trained to respond to a brief light stimulus presented randomly in one of five spatial locations, with 100 trials per session. Once performance had stabilized rats were treated with escalating doses of amphetamine (three injections per week for 5 weeks at 1-5 mg/kg per week); testing was continued on nondrug days, and for several weeks of withdrawal. During the amphetamine-treatment and withdrawal phases accuracy of responding was unaffected, but errors of omission increased. Lengthening the stimulus duration abolished this effect. Reducing the stimulus duration also reduced response accuracy and this effect was more marked in amphetamine-treated rats. Both reduced accuracy, and increased omissions, seen in amphetamine-treated rats were reversed by injecting the D1 receptor agonist SKF38393 into the medial prefrontal cortex. This treatment also prevented the decline in accuracy in control animals that resulted from reducing the stimulus duration. These results, indicating that exposure to amphetamine induces a long-lasting deficit in visual attention, add to a growing list of deficits suggesting that amphetamine-sensitized state may model the cognitive deficit state in schizophrenia. The reversal of these deficits by a D1 receptor agonist provides further evidence that prefrontal D1 dopamine receptors are involved in cognition, and may be a potential target for treatment of impaired cognition in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1301221 | DOI Listing |
Ann Neurosci
January 2025
National Resource Centre for Value Education in Engineering, Indian Institute of Technology, Delhi, India.
Background: Neural activity and subjective experiences indicate that breath-awareness practices, which focus on mindful observation of breath, promote tranquil calm and thoughtless awareness.
Purpose: This study explores the impact of tristage Ānāpānasati-based breath meditation on electroencephalography (EEG) oscillations and self-reported mindfulness states in novice meditators following a period of effortful cognition.
Methods: Eighty-nine novice meditators (82 males; Mean Age = 24.
Kidney Res Clin Pract
January 2025
Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
Background: We aimed to explore changes in decision-related brain microstructure, brain functional activities, and functional connectivity, and their correlations with cognitive function in end-stage kidney disease (ESKD) patients undergoing peritoneal dialysis (PD). Furthermore, the impact of dialysis on these changes was examined.
Methods: Thirty ESKD patients undergoing PD, 20 chronic kidney disease (CKD) stage 5 patients without dialysis (predialysis CKD stage 5), and 30 healthy controls (HC) were recruited for the study.
BMC Psychol
January 2025
Institute of Psychology and Behavior, Henan University, Kaifeng, 475001, China.
With the omnipresence of online social media, Boys' Love (BL) culture has found a burgeoning audience among young females. However, we know very little about the audience of this online cultural phenomena, also the potential implications of BL culture to female remain under-explored. Study 1 conducted a survey to investigate the BL audience's demography data and attitudes to homosexual ect.
View Article and Find Full Text PDFMol Brain
January 2025
Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.
View Article and Find Full Text PDFTrends Mol Med
January 2025
Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!